Towards Enabling High-
Performance for Multi-Language

Programs and Systems

Adaptive Compilation Environments (RACE)
Computer Science Dept.
Univ. of California, Santa Barbara

PSI EtA (¥ n) Keynote

October 17, 2010
UCSB

e Hardware/architecture evolution

m Low cost, high performance, memory-rich, multicore,
virtualization support

® Distributed cluster computing

m Web services, parallel/concurrent tasks, virtualized clusters
(guestVMs), cloud computing

® The people who are developing applications/software
m Productivity programmers vs specialists/experts

® Software as components, modules, tiers
m Isolated via runtime and potentially virtual machine monitor
= Reuse, mobility, multiple levels of fault tolerance, isolation

Modern Software and Systems

® Hardware/architecture evolution

® Distributed cluster computing
® Software as components, modules, tiers
m Reuse, mobility, multi-level fault tolerance, isolation

Web

Applet Container Application Database

Container Container Engine
JSP
Applet = BB SQL
RMI
J2SE CORBA
J2SE J2SE
UCSB Traditional Java Enterprise / Web 1.0

Modern Software and Systems

® Hardware/architecture evolution

® Distributed cluster computing
® Software as components, modules, tiers
m Reuse, mobility, multi-level fault tolerance, isolation

Web

Applet Container Application Database
Container Container Engine
JSP
Applet m m EJB SQL
J2SE TCP/IP CORBA

LUJ2BET xwmL | J2SE J2SE
J2SE INDI \ —

tier co-location or distribution
1+ multi-core system

UCSB Traditional Java Enterprise / Web 1.0

Modern Software and Systems

® Hardware/architecture evolution
® Distributed cluster computing

® Software as components, modules, tiers
m Executed within own runtime and/or guestVM
» Reuse, mobility, process-level fault tolerance, isolation
= Multi-language -- Web 2.0, web services, cloud systems
» Presentation layer: Javascript, Ruby, Java, Python
» Server-side logic: PHP, Perl, Java, Python, Ruby
» Computation: MapReduce streaming (multi-language)
» Database, key-value store: C++, Java, + query languages
m Next-generation distributed systems require support for
» HPC: Python, Ruby, R -- with C, C++
» Concurrency: Thorn, X10

gy Frameworks, IDES facilitate development and deployment

o

Modern Software and Systems

® Hardware/architecture evolution

® Distributed cluster computing
® Software as components, modules, tiers
m Reuse, mobility, multi-level fault tolerance, isolation

Web

Applet Container Application Database
Container Container Engine
JSP
Applet m m EJB SQL
J2SE TCP/IP CORBA

LUJ2BET xwmL | J2SE J2SE
J2SE INDI \ —

tier co-location or distribution
1+ multi-core system

UCSB Traditional Java Enterprise / Web 1.0

Modern Software and Systems

® Hardware/architecture evolution

® Distributed cluster computing
® Software as components, modules, tiers
m Reuse, mobility, multi-level fault tolerance, isolation
= Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,..

Computation, Database/
data/fs support datastore

=)

RPC and RPC and
messaging Yssay

tier co-location or distribution
1+ multi-core system

Presentation Server logic

support
=)

HTTP
TCP/IP

Modern Software and Systems

® Hardware/architecture evolution

® Distributed cluster computing
® Software as components, modules, tiers
m Reuse, mobility, multi-level fault tolerance, isolation
= Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,..

Computation, Database/
data/fs support datastore

=)

RPC and RPC and
messaging Yssay

tier co-location or distribution
1+ multi-core system

Presentation Server logic

support
=)

HTTP
TCP/IP

e Hardware/architecture evolution
® Distributed cluster computing
e Software as components, modules, tiers, guestVMs

s Reuse, mobility, multi-level fault tolerance, isolation
s Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,...

» Within and across VMs

Guest VM Guest VM <§uest VI\>
RPC and RPC and
messaging messaging

\ VM co-location or dlstrlbutlon

1+ multi-core system

ucsB Hardware virtualization support: s

e Hardware/architecture evolution
® Distributed cluster computing
e Software as components, modules, tiers, guestVMs

s Reuse, mobility, multi-level fault tolerance, isolation
s Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,...

» Within and across VMs

Guest VM Guest VM Guest VM
RPC and RPC and

messaging messaging

\ amazoncom

Wb services

ucss Hardware virtualization Support: s /| Eucalyptus

e Hardware/architecture evolution
® Distributed cluster computing
e Software as components, modules, tiers, guest VMs

s Reuse, mobility, multi-level fault tolerance, isolation
= Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL...

» Within and across VMs

Guest VM Guest VM <§uest VI\>
RPC and RPC and
messaging messaging
\ amazon.co/m

Wb services

ucss Hardware virtualization Support: s /| Eucalyptus

Programmer preference, expertise

Amenability to addressing the particular problem that the
component is designed to solve

Library and framework support

Speed of development
m Fast prototyping, software understanding
m Easy and transparent dynamic updates
s Implementation, testing, debugging
s SWE practice (agility, pairs)
Performance

Portability
= Availability of language runtimes (interpreters)

Nty Choosing one means accepting limitations for 1+ metrics
>

® No one actually writes much code anymore...

= Large numbers of programmers make their code available via
the web (freely available and licensed open source)

» Written in the language chosen by the author(s)

® Open source has experienced a surge in popularity, support,
and participation
m Participation by vast numbers of developers and users
» Ideas for features, feedback, bug fixes

» Short feedback/release loop
» Online resources (FAQs, forums) provide searchable support

» Potential for viral, wide-spread use, free advertising

® Free software (open APIS)
s Mashups, cloud/web services, software-as-a-service

® ¢ Available packages, libraries
UCSB

e

Challenges to Modern Distributed Systems

® Traditional distributed systems problems

Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

Integrated development, programmer productivity
Configuration & deployment

Isolation & quality of service

Monitoring, performance profiling, debugging
Performance optimization, scaling, & energy efficiency

Challenges to Modern Distributed Systems

® Traditional distributed systems problems

m Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

m Integrated development, programmer productivity

m Configuration & deployment

m Isolation & quality of service

m Monitoring, performance profiling, debugging

m Performance optimization, scaling, & energy efficiency

= Only now, we need support for
» Multiple languages and their runtime systems
» Interoperation with extant services, software, systems
» Pay-per-use (SLAs), cost (monetary, power/energy, time)
» Portable execution on disparate software infrastructures

Challenges to Modern Distributed Systems

® Traditional distributed systems problems

m Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

m Integrated development, programmer productivity

m Configuration & deployment

m Isolation & quality of service

m Monitoring, performance profiling, debugging

m Performance optimization, scaling, & energy efficiency

= Only now, we need support for
» Multiple languages and their runtime systems
» Interoperation with extant services, software, systems
» Pay-per-use (SLAs), cost (monetary, power/energy, time)
» Portable execution on disparate software infrastructures

Challenges to Modern Distributed Systems

® Traditional distributed systems problems

m Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

m Integrated development, programmer productivity

m Configuration & deployment

m Isolation & quality of service

m Monitoring, performance profiling, debugging

m Performance optimization, scaling, & energy efficiency

= Only now, we need support for
» Multiple languages and their runtime systems
» Interoperation with extant services, software, systems
» Pay-per-use (SLAs), cost (monetary, power/energy, time)
» Portable execution on disparate software infrastructures

Challenges to Modern Distributed Systems

® Traditional distributed systems problems

m Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

m Integrated development, programmer productivity

m Configuration & deployment

m Isolation & quality of service

m Monitoring, performance profiling, debugging

m Performance optimization, scaling, & energy efficiency

= Only now, we need support for
» Multiple languages and their runtime systems
» Interoperation with extant services, software, systems
» Pay-per-use (SLAs), cost (monetary, power/energy, time)
» Portable execution on disparate software infrastructures

Develop/Deploy-ment of Distributed Apps/Services

e \What is your ideal?

= Write-once, run anywhere
» Laptop, local cluster, across multiple clusters

» In public/hybrid clouds: Amazon AWS, Eucalyptus clusters,
Google App Engine, Microsoft Azure, ... others

m Wide variety of scalable, high-performance services & libraries
» Well-defined APIs

= Aware of
» Cost
» Price-performance or price-scale

= Automatic
» Scaling (of different metrics)

» Performance optimization and customization
¢ Component level, parallelization, load-balancing, cost

UCSB » Deployment and configuration of libraries and services

Our Approach

® | everage advances in cloud computing
® Cloud computing

Our Approach

® | everage advances in cloud computing

® Cloud computing

m Remote/easy access to distributed & shared cluster resources

» Isolated CPUs, storage, networking, services made available via
web interfaces

UCSB

Our Approach

® | everage advances in cloud computing

® Cloud computing

m Remote/easy access to distributed & shared cluster resources

» Isolated CPUs, storage, networking, services made available via
web interfaces

m Culmination of grid/cluster/utility/elastic computing
» Exploits advances in processor, virtualization, systems technology

m Public: pay-per-use (service level agreements (SLAS))
» Users rent small fraction of resources owned by others
¢ Amazon, Microsoft, Google, others...
m Private: similar distributed system support for your cluster
» Proprietary and open source options

Cloud computing

e 3 types: as-a-Service (aaS) ':"émazog.co,m.
- weD semvices

m Infrastructure: Amazon Web Services (EC2, S3, EBS)

» Virtualized, isolated (CPU, Network, Storage) systems on which
users execute entire runtime stacks

+ Fully customer self-service
» Open APIs (IaaS standard), scalable services

/| Eucalyptus

m Platform: Google App Engine, Microsoft Azure E;J
» Scalable program-level abstractions via well-defined interfaces
» Enable construction of network-accessible applications
» Process-level (sandbox) isolation, complete software stack

s Software: Salesforce.com orcccom®
» Applications provided to thin clients over a network
UCSB » Customizable

Our Approach

® | everage advances in cloud computing
® \Why not just use extant cloud systems?

Our Approach

® | everage advances in cloud computing

® \Why not just use extant cloud systems?

m Public
» Privacy of code and data
» Potential vendor “lock-in"
» Cost (even though currently very low)
» Availability reliance
» Resource/application constraints
» Opaque system, closed implementations

= Private
» Proprietary (cost), closed implementations
= Open source

» Infrastructure only (fully user self-service customization,
deployment, etc.) — not necessarily developer focused

Our Approach

® | everage advances in cloud computing
® \Why not just use extant cloud systems?

m Public
> \
15-
> a a‘d P;?
> xot
)
> 0‘ “0“
A o
3
m Private

b
= Open source

® | everage advances in cloud computing

® AppScale (http://appscale.cs.ucsb.edu)
s Implementation of different extant cloud APIs
» Using different programming languages
» Starting place: Google App Engine (GAE) — familiarity, users, apps
m Execution over
» Cloud infrastructures: Amazon Web Services, Eucalyptus
» Cloud platforms: GAE, Azure (under development)
» Virtualization layers: Xen, KVM, none
s Automatic
» Configuration and deployment of libraries and services
» Monitoring of distributed system performance data
m Test drive in a private setting before moving to a public cloud
» Evaluate different cloud services

AppScale: Cloud Platform Portability

Application

servers (Java, controller/ Distributed

Python, Thorn) datastores
schedulers

4-»‘ =
oo® ‘0 PRt

B B B B B B Bbackground tasks

1+ multi-core system
potentially virtualized

Pluggable
Components run in
Elastic — grow and one or more clouds
UCSB shrink with demand (public and private)

AppScale: Cloud Platform Portability

HBase, Hypertable,

Application MySQL, Cassandra
servers (Java, DistributedA/Vo|demort MongoDB
Python, Thorn) controller/ datastores is, Me ’

schedulers Scalaris, tI\;I]emcacheDB,
others...

ﬁLﬁ

\ \ Call out to SimpleDB i
® o 070 s ind B

‘ ‘ ‘ ‘ ‘services Google App Engine

B B B B B B Bbackground tasks

1+ multi-core system
potentially virtualized

Transaction support

Pluggable
Components run in
Elastic — grow and one or more clouds
UCSB shrink with demand (public and private)

AppScale: Cloud Platform Portability

Application
servers (Java, controller/ Distributed GAE APIs: Mail,
Python, Thorn) datastores images, user,

schedulers

(%\-’I‘

messaging, tasks

As well as Hadoop,
MPI, X10, queues,

A//stochastic simulation

' Others: R, Rhipe, Kull
0020 @ /i ek

B B B B B B Bbackground tasks

1+ multi-core system
potentially virtualized

Pluggable
Components run in
Elastic — grow and one or more clouds
UCSB shrink with demand (public and private)

® Hybrid cloud support
m Multi-cloud scheduling and scaling
s Employ services from different cloud systems concurrently

e Multi-level monitoring and profiling
m Static and dynamic language runtimes, HPMs, system level
s Feedback directed optimization, scaling (up/down), |d balancing

® Transparent, portable execution
m Laptop, your cluster, public and private clouds

® New application domains
s HPC services & libraries, map-reduce, large-scale data analytics

® (Cloud language support
- For new and extant languages, cloud specific functionality

Challenges to Modern Distributed Systems

® Traditional distributed systems problems

m Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

m Integrated development, programmer productivity

m Configuration & deployment

m Isolation & quality of service

m Monitoring, performance profiling, debugging

m Performance optimization, scaling, & energy efficiency

= Only now, we need support for
» Multiple languages and their runtime systems
» Interoperation with extant services, software, systems
» Pay-per-use (SLAs), cost (monetary, power/energy, time)
» Portable execution on disparate software infrastructures

Challenges to Modern Distributed Systems

® Traditional distributed systems problems

m Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

m Integrated development, programmer productivity

m Configuration & deployment

m Isolation & quality of service

m Monitoring, performance profiling, debugging

m Performance optimization, scaling, & energy efficiency

= Only now, we need support for
» Multiple languages and their runtime systems
» Interoperation with extant services, software, systems
» Pay-per-use (SLAs), cost (monetary, power/energy, time)
» Portable execution on disparate software infrastructures

Efficient Cross-Language Communication

® Interoperating components can be executing...

Physical
machine

Machine

Network Stack —

Virtualization —» |

UCSB
>

Virtual Serialization of

objects (for RPC
(GuestVM) & messaging)

"

Distinct physical machines

Java
Runtime

Python

Runtime

Java
Runtime

Python
Runtime

=/

Virtual Serialization of
Physical Machine objects (for RPC : :
machine (GuestVM) & messaging) Same physical machine

‘ (co-located)

. . . . h
Distinct physical machines Rontime
(ON)
_—-
Runtime

Python
Runtime
Java Python
Runtime Runtime

Java Pyt
Runtime Run

hon

time
UCSB - —g

e ——

Network Stack —

Python
Runtime

Virtualization —» | g

Cross-language Communication & Coordination

e Python, Javascript, Perl, PHP, Ruby, Java, C/C++, .Net, ...

® Cross-language/process communications technology
m RPC, messaging
» Thrift, HTTP/s, REST, SOAP, RPC, COM, SIP, SWIG, CORBA

» For more than just web services: Map-Reduce (MR), MR-
streaming, MPI

m Data exchange formats
» Protocol Buffers, XML, JSON

m Benefits from these technologies

» Programmer productivity
+ Abstraction, portability, copy semantics

m Limitations
» Require serialization and encoding of data/objects
UCSB » Network communication

Virtual Serialization of
Physical Machine objects (for RPC : :
machine (GuestVM) & messaging) Same physical machine

‘ (co-located)

. . . . h
Distinct physical machines Rontime
(ON)
_—-
Runtime

Python
Runtime
Java Python
Runtime Runtime

Java Pyt
Runtime Run

hon

time
UCSB - —g

e ——

Network Stack —

Python
Runtime

Virtualization —» | g

Cross-language Communication & Coordination

e Python, Javascript, Perl, PHP, Ruby, Java, C/C++, .Net, ...

® Cross-language/process communications technology

m RPC, messaging
» Thrift, HTTP/s, REST, SOAP, RPC, COM, SIP, SWIG, CORBA
» For more than just web services: Map-Reduce (MR), MR-
streaming, MPI
m Data exchange formats
» Protocol Buffers, XML, JSON

m Exploit co-location of runtimes and virtual machines

» COLORS — Co-Located Runtime Sharing (OOPSLA'10)

¢ Transparent / automatic replacement of high overhead RPC
and messaging protocols

Direct, type-safe object sharing across language runtimes is also
possible

Co-located Runtime Sharing (CoLoRS)

Java CoLoRS server process Python
process / \ process
Private Heap Shared Heap Private Heap

,)(Tj\ i
o) —o 7
N)t [
— — | I N——]
Private Classes Shared Classes Private Classes
Java g % g CoLoRS GC % % % Python
% % % threads \ threads / threads
\ co-located on a / /
multi-core system

® (Object and memory model

m Objects and classes shared between programs written in
dynamic and static languages

s Static-dynamic hybrid — fast yet flexible
® Type system
m Preserves language-specific type-safety w/o new type rules

® Shared-memory garbage collector

m Parallel, concurrent, on-the-fly GC that guarantees termination
» No system-wide pauses, non-moving

® Synchronization in shared-memory

m Simple, fast, yet same semantics as monitor synchronization
® CoLoRS support for HotSpot, cPython, and C++

m Requires runtime modification, C++ source2source translation

CoLoRS Evaluation: Microbenchmarks

® Four cross-language RPC systems
m Python client; Java server
s Employ primitive and user-defined data types

Throughput Latency
[X CoLoRS improvement | [X CoLoRS improvement]
100 100
Average: 39x
80 ae 80
60 verage: 35x 60
40 40 I
20 - . 20
0 i 1 I —_— I O . I | l - '
CORBA Protocol REST Thrift CORBA Protocol REST Thrift
Buffers Buffers

CoLoRS Evaluation: Overhead

e MRE virtualization impacts performance

* Field access, method calls, synchronization, write barriers,
allocation, GC, core libraries

® ColLoRS-oblivious programs: standard Java and Python
benchmarks

: Overhead is
below 9% and
| I 5% on average

DaCapo pybench shootout

O N WA~ U1 OO
|

Execution time overhead [%]

® Distributed system support for easy deployment, scale
m Cloud computing — remote access to cpu/storage/networking
s Open source systems for private/hybrid cloud use
» Bring benefits of cloud computing to local cluster resources
» Support interfaces of popular public/proprietary clouds
» Single platform for write-once, run-anywhere distributed apps
e Multi-language, multi-component software is here to stay
= Dynamic and static languages must interoperate efficiently

m Efficient technologies for cross-runtime communication
» RPC, message-passing, object sharing via shared memory

® Together offer potential for new research and technological
advance in high-performance and scalable computing

m Profiling, optimization, scaling, scheduling, communication,
UCSB languages, development/deployment, ...

® Students and Visitors!

m Chris Bunch, Jovan Chohan, Navraj Chohan, Nupur Garg, Matt
Hubert, Jonathan Kupferman, Puneet Lakhina, Yiming Li, Nagy

Mostafa, Yoshihide Nomura (Fujitsu), Raviprakash
Ramanujam, Michal Weigel

® Support
m Google, IBM Research, National Science Foundation

http://www.cs.ucsb.edu/~racelab
http://appscale.cs.ucsb.edu/

