
Towards Enabling High-
Performance for Multi-Language

Programs and Systems

Chandra Krintz
Laboratory for Research on

Adaptive Compilation Environments (RACE)
Computer Science Dept.

Univ. of California, Santa Barbara

PSI EtA (ψη) Keynote
October 17, 2010

Modern Software & Systems: Recent Changes
•  Hardware/architecture evolution

  Low cost, high performance, memory-rich, multicore,
virtualization support

•  Distributed cluster computing
  Web services, parallel/concurrent tasks, virtualized clusters

(guestVMs), cloud computing

•  The people who are developing applications/software
  Productivity programmers vs specialists/experts

•  Software as components, modules, tiers
  Isolated via runtime and potentially virtual machine monitor
  Reuse, mobility, multiple levels of fault tolerance, isolation

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing
•  Software as components, modules, tiers

  Reuse, mobility, multi-level fault tolerance, isolation

Applet

J2SE

Applet
Container

EJB

Application
Container

Database
Engine

RMI
CORBA

XML
JNDI

JDBC HTTP
TCP/IP

SQL

Traditional Java Enterprise / Web 1.0

J2SE
J2EE J2EE

J2SE

JSP

Web
Container

Servlet

J2SE
J2EE

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing
•  Software as components, modules, tiers

  Reuse, mobility, multi-level fault tolerance, isolation

Applet

J2SE

Applet
Container

EJB

Application
Container

Database
Engine

RMI
CORBA

XML
JNDI

JDBC HTTP
TCP/IP

SQL

Traditional Java Enterprise / Web 1.0

J2SE
J2EE J2EE

J2SE

JSP

Web
Container

Servlet

J2SE
J2EE

1+ multi-core system
tier co-location or distribution

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing

•  Software as components, modules, tiers
  Executed within own runtime and/or guestVM

 Reuse, mobility, process-level fault tolerance, isolation

  Multi-language -- Web 2.0, web services, cloud systems
 Presentation layer: Javascript, Ruby, Java, Python
 Server-side logic: PHP, Perl, Java, Python, Ruby
 Computation: MapReduce streaming (multi-language)
 Database, key-value store: C++, Java, + query languages

  Next-generation distributed systems require support for
 HPC: Python, Ruby, R -- with C, C++
 Concurrency: Thorn, X10

  Frameworks, IDES facilitate development and deployment

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing
•  Software as components, modules, tiers

  Reuse, mobility, multi-level fault tolerance, isolation

Applet

J2SE

Applet
Container

EJB

Application
Container

Database
Engine

RMI
CORBA

XML
JNDI

JDBC HTTP
TCP/IP

SQL

Traditional Java Enterprise / Web 1.0

J2SE
J2EE J2EE

J2SE

JSP

Web
Container

Servlet

J2SE
J2EE

1+ multi-core system
tier co-location or distribution

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing
•  Software as components, modules, tiers

  Reuse, mobility, multi-level fault tolerance, isolation
  Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,…

Presentation
support

Computation,
data/fs support

Database/
datastore

RPC and
messaging

HTTP
TCP/IP

Server logic

1+ multi-core system
tier co-location or distribution

RPC and
messaging

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing
•  Software as components, modules, tiers

  Reuse, mobility, multi-level fault tolerance, isolation
  Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,…

Presentation
support

Computation,
data/fs support

Database/
datastore

RPC and
messaging

HTTP
TCP/IP

Server logic

1+ multi-core system
tier co-location or distribution

RPC and
messaging

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing
•  Software as components, modules, tiers, guestVMs

  Reuse, mobility, multi-level fault tolerance, isolation
  Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,…

 Within and across VMs

1+ multi-core system
VM co-location or distribution

Guest VM
RPC and

messaging

Guest VM Guest VM

Hardware virtualization support:

RPC and
messaging

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing
•  Software as components, modules, tiers, guestVMs

  Reuse, mobility, multi-level fault tolerance, isolation
  Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,…

 Within and across VMs

Guest VM
RPC and

messaging

Guest VM Guest VM

Hardware virtualization support:

RPC and
messaging

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing
•  Software as components, modules, tiers, guest VMs

  Reuse, mobility, multi-level fault tolerance, isolation
  Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,…

 Within and across VMs

Guest VM
RPC and

messaging

Guest VM Guest VM

Hardware virtualization support:

RPC and
messaging

Why One Language is Not Enough
•  Programmer preference, expertise
•  Amenability to addressing the particular problem that the

component is designed to solve
•  Library and framework support
•  Speed of development

  Fast prototyping, software understanding
  Easy and transparent dynamic updates
  Implementation, testing, debugging
  SWE practice (agility, pairs)

•  Performance
•  Portability

  Availability of language runtimes (interpreters)

 Choosing one means accepting limitations for 1+ metrics

Why One Language is Not Enough
•  No one actually writes much code anymore…

  Large numbers of programmers make their code available via
the web (freely available and licensed open source)
 Written in the language chosen by the author(s)

•  Open source has experienced a surge in popularity, support,
and participation
  Participation by vast numbers of developers and users

 Ideas for features, feedback, bug fixes
 Short feedback/release loop
 Online resources (FAQs, forums) provide searchable support
 Potential for viral, wide-spread use, free advertising

•  Free software (open APIs)
  Mashups, cloud/web services, software-as-a-service

•  Available packages, libraries

Challenges to Modern Distributed Systems
•  Traditional distributed systems problems

  Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

  Integrated development, programmer productivity
  Configuration & deployment
  Isolation & quality of service
  Monitoring, performance profiling, debugging
  Performance optimization, scaling, & energy efficiency

Challenges to Modern Distributed Systems
•  Traditional distributed systems problems

  Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

  Integrated development, programmer productivity
  Configuration & deployment
  Isolation & quality of service
  Monitoring, performance profiling, debugging
  Performance optimization, scaling, & energy efficiency

  Only now, we need support for
 Multiple languages and their runtime systems
 Interoperation with extant services, software, systems
 Pay-per-use (SLAs), cost (monetary, power/energy, time)
 Portable execution on disparate software infrastructures

Challenges to Modern Distributed Systems
•  Traditional distributed systems problems

  Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

  Integrated development, programmer productivity
  Configuration & deployment
  Isolation & quality of service
  Monitoring, performance profiling, debugging
  Performance optimization, scaling, & energy efficiency

  Only now, we need support for
 Multiple languages and their runtime systems
 Interoperation with extant services, software, systems
 Pay-per-use (SLAs), cost (monetary, power/energy, time)
 Portable execution on disparate software infrastructures

Challenges to Modern Distributed Systems
•  Traditional distributed systems problems

  Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

  Integrated development, programmer productivity
  Configuration & deployment
  Isolation & quality of service
  Monitoring, performance profiling, debugging
  Performance optimization, scaling, & energy efficiency

  Only now, we need support for
 Multiple languages and their runtime systems
 Interoperation with extant services, software, systems
 Pay-per-use (SLAs), cost (monetary, power/energy, time)
 Portable execution on disparate software infrastructures

Challenges to Modern Distributed Systems
•  Traditional distributed systems problems

  Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

  Integrated development, programmer productivity
  Configuration & deployment
  Isolation & quality of service
  Monitoring, performance profiling, debugging
  Performance optimization, scaling, & energy efficiency

  Only now, we need support for
 Multiple languages and their runtime systems
 Interoperation with extant services, software, systems
 Pay-per-use (SLAs), cost (monetary, power/energy, time)
 Portable execution on disparate software infrastructures

Develop/Deploy-ment of Distributed Apps/Services

•  What is your ideal?
  Write-once, run anywhere

 Laptop, local cluster, across multiple clusters
 In public/hybrid clouds: Amazon AWS, Eucalyptus clusters,

Google App Engine, Microsoft Azure, … others

  Wide variety of scalable, high-performance services & libraries
 Well-defined APIs

  Aware of
 Cost
 Price-performance or price-scale

  Automatic
 Scaling (of different metrics)
 Performance optimization and customization

  Component level, parallelization, load-balancing, cost

 Deployment and configuration of libraries and services

Our Approach
•  Leverage advances in cloud computing
•  Cloud computing

Our Approach
•  Leverage advances in cloud computing
•  Cloud computing

  Remote/easy access to distributed & shared cluster resources
 Isolated CPUs, storage, networking, services made available via

web interfaces

Our Approach
•  Leverage advances in cloud computing
•  Cloud computing

  Remote/easy access to distributed & shared cluster resources
 Isolated CPUs, storage, networking, services made available via

web interfaces

  Culmination of grid/cluster/utility/elastic computing
 Exploits advances in processor, virtualization, systems technology

  Public: pay-per-use (service level agreements (SLAs))
 Users rent small fraction of resources owned by others

  Amazon, Microsoft, Google, others…

  Private: similar distributed system support for your cluster
 Proprietary and open source options

Cloud computing
•  3 types: as-a-Service (aaS)

  Infrastructure: Amazon Web Services (EC2, S3, EBS)
 Virtualized, isolated (CPU, Network, Storage) systems on which

users execute entire runtime stacks
  Fully customer self-service

 Open APIs (IaaS standard), scalable services

  Platform: Google App Engine, Microsoft Azure
 Scalable program-level abstractions via well-defined interfaces
 Enable construction of network-accessible applications
 Process-level (sandbox) isolation, complete software stack

  Software: Salesforce.com
 Applications provided to thin clients over a network
 Customizable

Our Approach
•  Leverage advances in cloud computing
•  Why not just use extant cloud systems?

Our Approach
•  Leverage advances in cloud computing
•  Why not just use extant cloud systems?

  Public
 Privacy of code and data
 Potential vendor “lock-in”
 Cost (even though currently very low)
 Availability reliance
 Resource/application constraints
 Opaque system, closed implementations

  Private
 Proprietary (cost), closed implementations

  Open source
 Infrastructure only (fully user self-service customization,

deployment, etc.) – not necessarily developer focused

Our Approach
•  Leverage advances in cloud computing
•  Why not just use extant cloud systems?

  Public
 Privacy of code and data
 Potential vendor “lock-in”
 Cost (even though currently very low)
 Availability reliance
 Resource/application constraints
 Opaque system, closed implementations

  Private
 Proprietary (cost), closed implementations

  Open source
 Infrastructure only (fully user self-service customization,

deployment, etc.) – not necessarily developer focused

☹ Lots of non-standard APIs!

Our Approach: Portable Cloud Platform
•  Leverage advances in cloud computing
•  AppScale (http://appscale.cs.ucsb.edu)

  Implementation of different extant cloud APIs
 Using different programming languages
 Starting place: Google App Engine (GAE) – familiarity, users, apps

  Execution over
 Cloud infrastructures: Amazon Web Services, Eucalyptus
 Cloud platforms: GAE, Azure (under development)
 Virtualization layers: Xen, KVM, none

  Automatic
 Configuration and deployment of libraries and services
 Monitoring of distributed system performance data

  Test drive in a private setting before moving to a public cloud
 Evaluate different cloud services

AppScale: Cloud Platform Portability

1+ multi-core system
potentially virtualized

background tasks

services

Distributed
datastores

controller/
schedulers

Application
servers (Java,
Python, Thorn)

Pluggable

Elastic – grow and
shrink with demand

Components run in
one or more clouds
(public and private)

AppScale: Cloud Platform Portability

1+ multi-core system
potentially virtualized

background tasks

services

Distributed
datastores

controller/
schedulers

Pluggable

Elastic – grow and
shrink with demand

HBase, Hypertable,
MySQL, Cassandra,

Voldemort, MongoDB,
Scalaris, MemcacheDB,

others…

Transaction support

Call out to SimpleDB in
AWS and BigTable in
Google App Engine

Components run in
one or more clouds
(public and private)

Application
servers (Java,
Python, Thorn)

AppScale: Cloud Platform Portability

1+ multi-core system
potentially virtualized

background tasks

services

Distributed
datastores

controller/
schedulers

Pluggable

Elastic – grow and
shrink with demand

GAE APIs: Mail,
images, user,

messaging, tasks

As well as Hadoop,
MPI, X10, queues,

stochastic simulation

Others: R, Rhipe, Kull
graph processing,…

Components run in
one or more clouds
(public and private)

Application
servers (Java,
Python, Thorn)

Portable Cloud Platform Research
•  Hybrid cloud support

  Multi-cloud scheduling and scaling
  Employ services from different cloud systems concurrently

•  Multi-level monitoring and profiling
  Static and dynamic language runtimes, HPMs, system level
  Feedback directed optimization, scaling (up/down), ld balancing

•  Transparent, portable execution
  Laptop, your cluster, public and private clouds

•  New application domains
  HPC services & libraries, map-reduce, large-scale data analytics

•  Cloud language support
  For new and extant languages, cloud specific functionality

Challenges to Modern Distributed Systems
•  Traditional distributed systems problems

  Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

  Integrated development, programmer productivity
  Configuration & deployment
  Isolation & quality of service
  Monitoring, performance profiling, debugging
  Performance optimization, scaling, & energy efficiency

  Only now, we need support for
 Multiple languages and their runtime systems
 Interoperation with extant services, software, systems
 Pay-per-use (SLAs), cost (monetary, power/energy, time)
 Portable execution on disparate software infrastructures

Challenges to Modern Distributed Systems
•  Traditional distributed systems problems

  Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

  Integrated development, programmer productivity
  Configuration & deployment
  Isolation & quality of service
  Monitoring, performance profiling, debugging
  Performance optimization, scaling, & energy efficiency

  Only now, we need support for
 Multiple languages and their runtime systems
 Interoperation with extant services, software, systems
 Pay-per-use (SLAs), cost (monetary, power/energy, time)
 Portable execution on disparate software infrastructures

Efficient Cross-Language Communication
•  Interoperating components can be executing…

Python
Runtime

Java
Runtime

Python
Runtime

Java
Runtime

OS OS

OS OS

Serialization of
objects (for RPC
& messaging)

Network
Network Stack

Virtualization

Physical
machine

Virtual
Machine

(GuestVM)

Distinct physical machines

Python
Runtime

Java
Runtime

Python
Runtime

Java
Runtime

Python
Runtime

Java
Runtime

Python
Runtime

Java
Runtime

Python
Runtime

Java
Runtime

OS

OS OS

OS OS

OS OS

OS

Serialization of
objects (for RPC
& messaging)

Network
Network Stack

Virtualization

Physical
machine

Virtual
Machine

(GuestVM)

Distinct physical machines

Same physical machine
(co-located)

Cross-language Communication & Coordination
•  Python, Javascript, Perl, PHP, Ruby, Java, C/C++, .Net, …
•  Cross-language/process communications technology

  RPC, messaging
 Thrift, HTTP/s, REST, SOAP, RPC, COM, SIP, SWIG, CORBA
 For more than just web services: Map-Reduce (MR), MR-

streaming, MPI

  Data exchange formats
 Protocol Buffers, XML, JSON

  Benefits from these technologies
 Programmer productivity

  Abstraction, portability, copy semantics

  Limitations
 Require serialization and encoding of data/objects
 Network communication

Python
Runtime

Java
Runtime

Python
Runtime

Java
Runtime

Python
Runtime

Java
Runtime

Python
Runtime

Java
Runtime

Python
Runtime

Java
Runtime

OS

OS OS

OS OS

OS OS

OS

Serialization of
objects (for RPC
& messaging)

Network
Network Stack

Virtualization

Physical
machine

Virtual
Machine

(GuestVM)

Distinct physical machines

Same physical machine
(co-located)

Cross-language Communication & Coordination
•  Python, Javascript, Perl, PHP, Ruby, Java, C/C++, .Net, …
•  Cross-language/process communications technology

  RPC, messaging
 Thrift, HTTP/s, REST, SOAP, RPC, COM, SIP, SWIG, CORBA
 For more than just web services: Map-Reduce (MR), MR-

streaming, MPI

  Data exchange formats
 Protocol Buffers, XML, JSON

  Exploit co-location of runtimes and virtual machines
 CoLoRS – Co-Located Runtime Sharing (OOPSLA’10)

  Transparent / automatic replacement of high overhead RPC
and messaging protocols

  Direct, type-safe object sharing across language runtimes is also
possible

Java
process

Python
process

Private Heap Private Heap

co-located on a
multi-core system

CoLoRS server process

Shared Classes

Shared Heap

Java
threads

Python
threads

CoLoRS GC
threads

Private Classes Private Classes

Co-located Runtime Sharing (CoLoRS)

CoLoRS Contributions
•  Object and memory model

  Objects and classes shared between programs written in
dynamic and static languages

  Static-dynamic hybrid – fast yet flexible

•  Type system
  Preserves language-specific type-safety w/o new type rules

•  Shared-memory garbage collector
  Parallel, concurrent, on-the-fly GC that guarantees termination

 No system-wide pauses, non-moving

•  Synchronization in shared-memory
  Simple, fast, yet same semantics as monitor synchronization

•  CoLoRS support for HotSpot, cPython, and C++
  Requires runtime modification, C++ source2source translation

CoLoRS Evaluation: Microbenchmarks
•  Four cross-language RPC systems

  Python client; Java server
  Employ primitive and user-defined data types

0

20

40

60

80

100

CORBA Protocol
Buffers

REST Thrift

0

20

40

60

80

100

CORBA Protocol
Buffers

REST Thrift

Throughput Latency

Average: 39x

Average: 35x

[x CoLoRS improvement] [x CoLoRS improvement]

CoLoRS Evaluation: Overhead
•  MRE virtualization impacts performance

  Field access, method calls, synchronization, write barriers,
allocation, GC, core libraries

•  CoLoRS-oblivious programs: standard Java and Python
benchmarks

0
1
2
3
4
5
6

DaCapo JBB pybench shootout Ex
ec

ut
io

n
tim

e
ov

er
he

ad
 [

%
]

Overhead is
below 9% and
5% on average

Summary
•  Distributed system support for easy deployment, scale

  Cloud computing – remote access to cpu/storage/networking
  Open source systems for private/hybrid cloud use

 Bring benefits of cloud computing to local cluster resources
 Support interfaces of popular public/proprietary clouds
 Single platform for write-once, run-anywhere distributed apps

•  Multi-language, multi-component software is here to stay
  Dynamic and static languages must interoperate efficiently
  Efficient technologies for cross-runtime communication

 RPC, message-passing, object sharing via shared memory

•  Together offer potential for new research and technological
advance in high-performance and scalable computing
  Profiling, optimization, scaling, scheduling, communication,

languages, development/deployment, …

Thanks!
•  Students and Visitors!

  Chris Bunch, Jovan Chohan, Navraj Chohan, Nupur Garg, Matt
Hubert, Jonathan Kupferman, Puneet Lakhina, Yiming Li, Nagy
Mostafa, Yoshihide Nomura (Fujitsu), Raviprakash
Ramanujam, Michal Weigel

•  Support
  Google, IBM Research, National Science Foundation

 http://www.cs.ucsb.edu/~racelab
 http://appscale.cs.ucsb.edu/

