
Towards Enabling High-
Performance for Multi-Language

Programs and Systems

Chandra Krintz
Laboratory for Research on

Adaptive Compilation Environments (RACE)
Computer Science Dept.

Univ. of California, Santa Barbara

PSI EtA (ψη) Keynote
October 17, 2010

Modern Software & Systems: Recent Changes
•  Hardware/architecture evolution

  Low cost, high performance, memory-rich, multicore,
virtualization support

•  Distributed cluster computing
  Web services, parallel/concurrent tasks, virtualized clusters

(guestVMs), cloud computing

•  The people who are developing applications/software
  Productivity programmers vs specialists/experts

•  Software as components, modules, tiers
  Isolated via runtime and potentially virtual machine monitor
  Reuse, mobility, multiple levels of fault tolerance, isolation

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing
•  Software as components, modules, tiers

  Reuse, mobility, multi-level fault tolerance, isolation

Applet

J2SE

Applet
Container

EJB

Application
Container

Database
Engine

RMI
CORBA

XML
JNDI

JDBC HTTP
TCP/IP

SQL

Traditional Java Enterprise / Web 1.0

J2SE
J2EE J2EE

J2SE

JSP

Web
Container

Servlet

J2SE
J2EE

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing
•  Software as components, modules, tiers

  Reuse, mobility, multi-level fault tolerance, isolation

Applet

J2SE

Applet
Container

EJB

Application
Container

Database
Engine

RMI
CORBA

XML
JNDI

JDBC HTTP
TCP/IP

SQL

Traditional Java Enterprise / Web 1.0

J2SE
J2EE J2EE

J2SE

JSP

Web
Container

Servlet

J2SE
J2EE

1+ multi-core system
tier co-location or distribution

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing

•  Software as components, modules, tiers
  Executed within own runtime and/or guestVM

 Reuse, mobility, process-level fault tolerance, isolation

  Multi-language -- Web 2.0, web services, cloud systems
 Presentation layer: Javascript, Ruby, Java, Python
 Server-side logic: PHP, Perl, Java, Python, Ruby
 Computation: MapReduce streaming (multi-language)
 Database, key-value store: C++, Java, + query languages

  Next-generation distributed systems require support for
 HPC: Python, Ruby, R -- with C, C++
 Concurrency: Thorn, X10

  Frameworks, IDES facilitate development and deployment

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing
•  Software as components, modules, tiers

  Reuse, mobility, multi-level fault tolerance, isolation

Applet

J2SE

Applet
Container

EJB

Application
Container

Database
Engine

RMI
CORBA

XML
JNDI

JDBC HTTP
TCP/IP

SQL

Traditional Java Enterprise / Web 1.0

J2SE
J2EE J2EE

J2SE

JSP

Web
Container

Servlet

J2SE
J2EE

1+ multi-core system
tier co-location or distribution

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing
•  Software as components, modules, tiers

  Reuse, mobility, multi-level fault tolerance, isolation
  Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,…

Presentation
support

Computation,
data/fs support

Database/
datastore

RPC and
messaging

HTTP
TCP/IP

Server logic

1+ multi-core system
tier co-location or distribution

RPC and
messaging

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing
•  Software as components, modules, tiers

  Reuse, mobility, multi-level fault tolerance, isolation
  Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,…

Presentation
support

Computation,
data/fs support

Database/
datastore

RPC and
messaging

HTTP
TCP/IP

Server logic

1+ multi-core system
tier co-location or distribution

RPC and
messaging

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing
•  Software as components, modules, tiers, guestVMs

  Reuse, mobility, multi-level fault tolerance, isolation
  Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,…

 Within and across VMs

1+ multi-core system
VM co-location or distribution

Guest VM
RPC and

messaging

Guest VM Guest VM

Hardware virtualization support:

RPC and
messaging

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing
•  Software as components, modules, tiers, guestVMs

  Reuse, mobility, multi-level fault tolerance, isolation
  Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,…

 Within and across VMs

Guest VM
RPC and

messaging

Guest VM Guest VM

Hardware virtualization support:

RPC and
messaging

Modern Software and Systems
•  Hardware/architecture evolution
•  Distributed cluster computing
•  Software as components, modules, tiers, guest VMs

  Reuse, mobility, multi-level fault tolerance, isolation
  Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,…

 Within and across VMs

Guest VM
RPC and

messaging

Guest VM Guest VM

Hardware virtualization support:

RPC and
messaging

Why One Language is Not Enough
•  Programmer preference, expertise
•  Amenability to addressing the particular problem that the

component is designed to solve
•  Library and framework support
•  Speed of development

  Fast prototyping, software understanding
  Easy and transparent dynamic updates
  Implementation, testing, debugging
  SWE practice (agility, pairs)

•  Performance
•  Portability

  Availability of language runtimes (interpreters)

 Choosing one means accepting limitations for 1+ metrics

Why One Language is Not Enough
•  No one actually writes much code anymore…

  Large numbers of programmers make their code available via
the web (freely available and licensed open source)
 Written in the language chosen by the author(s)

•  Open source has experienced a surge in popularity, support,
and participation
  Participation by vast numbers of developers and users

 Ideas for features, feedback, bug fixes
 Short feedback/release loop
 Online resources (FAQs, forums) provide searchable support
 Potential for viral, wide-spread use, free advertising

•  Free software (open APIs)
  Mashups, cloud/web services, software-as-a-service

•  Available packages, libraries

Challenges to Modern Distributed Systems
•  Traditional distributed systems problems

  Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

  Integrated development, programmer productivity
  Configuration & deployment
  Isolation & quality of service
  Monitoring, performance profiling, debugging
  Performance optimization, scaling, & energy efficiency

Challenges to Modern Distributed Systems
•  Traditional distributed systems problems

  Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

  Integrated development, programmer productivity
  Configuration & deployment
  Isolation & quality of service
  Monitoring, performance profiling, debugging
  Performance optimization, scaling, & energy efficiency

  Only now, we need support for
 Multiple languages and their runtime systems
 Interoperation with extant services, software, systems
 Pay-per-use (SLAs), cost (monetary, power/energy, time)
 Portable execution on disparate software infrastructures

Challenges to Modern Distributed Systems
•  Traditional distributed systems problems

  Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

  Integrated development, programmer productivity
  Configuration & deployment
  Isolation & quality of service
  Monitoring, performance profiling, debugging
  Performance optimization, scaling, & energy efficiency

  Only now, we need support for
 Multiple languages and their runtime systems
 Interoperation with extant services, software, systems
 Pay-per-use (SLAs), cost (monetary, power/energy, time)
 Portable execution on disparate software infrastructures

Challenges to Modern Distributed Systems
•  Traditional distributed systems problems

  Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

  Integrated development, programmer productivity
  Configuration & deployment
  Isolation & quality of service
  Monitoring, performance profiling, debugging
  Performance optimization, scaling, & energy efficiency

  Only now, we need support for
 Multiple languages and their runtime systems
 Interoperation with extant services, software, systems
 Pay-per-use (SLAs), cost (monetary, power/energy, time)
 Portable execution on disparate software infrastructures

Challenges to Modern Distributed Systems
•  Traditional distributed systems problems

  Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

  Integrated development, programmer productivity
  Configuration & deployment
  Isolation & quality of service
  Monitoring, performance profiling, debugging
  Performance optimization, scaling, & energy efficiency

  Only now, we need support for
 Multiple languages and their runtime systems
 Interoperation with extant services, software, systems
 Pay-per-use (SLAs), cost (monetary, power/energy, time)
 Portable execution on disparate software infrastructures

Develop/Deploy-ment of Distributed Apps/Services

•  What is your ideal?
  Write-once, run anywhere

 Laptop, local cluster, across multiple clusters
 In public/hybrid clouds: Amazon AWS, Eucalyptus clusters,

Google App Engine, Microsoft Azure, … others

  Wide variety of scalable, high-performance services & libraries
 Well-defined APIs

  Aware of
 Cost
 Price-performance or price-scale

  Automatic
 Scaling (of different metrics)
 Performance optimization and customization

  Component level, parallelization, load-balancing, cost

 Deployment and configuration of libraries and services

Our Approach
•  Leverage advances in cloud computing
•  Cloud computing

Our Approach
•  Leverage advances in cloud computing
•  Cloud computing

  Remote/easy access to distributed & shared cluster resources
 Isolated CPUs, storage, networking, services made available via

web interfaces

Our Approach
•  Leverage advances in cloud computing
•  Cloud computing

  Remote/easy access to distributed & shared cluster resources
 Isolated CPUs, storage, networking, services made available via

web interfaces

  Culmination of grid/cluster/utility/elastic computing
 Exploits advances in processor, virtualization, systems technology

  Public: pay-per-use (service level agreements (SLAs))
 Users rent small fraction of resources owned by others

  Amazon, Microsoft, Google, others…

  Private: similar distributed system support for your cluster
 Proprietary and open source options

Cloud computing
•  3 types: as-a-Service (aaS)

  Infrastructure: Amazon Web Services (EC2, S3, EBS)
 Virtualized, isolated (CPU, Network, Storage) systems on which

users execute entire runtime stacks
  Fully customer self-service

 Open APIs (IaaS standard), scalable services

  Platform: Google App Engine, Microsoft Azure
 Scalable program-level abstractions via well-defined interfaces
 Enable construction of network-accessible applications
 Process-level (sandbox) isolation, complete software stack

  Software: Salesforce.com
 Applications provided to thin clients over a network
 Customizable

Our Approach
•  Leverage advances in cloud computing
•  Why not just use extant cloud systems?

Our Approach
•  Leverage advances in cloud computing
•  Why not just use extant cloud systems?

  Public
 Privacy of code and data
 Potential vendor “lock-in”
 Cost (even though currently very low)
 Availability reliance
 Resource/application constraints
 Opaque system, closed implementations

  Private
 Proprietary (cost), closed implementations

  Open source
 Infrastructure only (fully user self-service customization,

deployment, etc.) – not necessarily developer focused

Our Approach
•  Leverage advances in cloud computing
•  Why not just use extant cloud systems?

  Public
 Privacy of code and data
 Potential vendor “lock-in”
 Cost (even though currently very low)
 Availability reliance
 Resource/application constraints
 Opaque system, closed implementations

  Private
 Proprietary (cost), closed implementations

  Open source
 Infrastructure only (fully user self-service customization,

deployment, etc.) – not necessarily developer focused

☹ Lots of non-standard APIs!

Our Approach: Portable Cloud Platform
•  Leverage advances in cloud computing
•  AppScale (http://appscale.cs.ucsb.edu)

  Implementation of different extant cloud APIs
 Using different programming languages
 Starting place: Google App Engine (GAE) – familiarity, users, apps

  Execution over
 Cloud infrastructures: Amazon Web Services, Eucalyptus
 Cloud platforms: GAE, Azure (under development)
 Virtualization layers: Xen, KVM, none

  Automatic
 Configuration and deployment of libraries and services
 Monitoring of distributed system performance data

  Test drive in a private setting before moving to a public cloud
 Evaluate different cloud services

AppScale: Cloud Platform Portability

1+ multi-core system
potentially virtualized

background tasks

services

Distributed
datastores

controller/
schedulers

Application
servers (Java,
Python, Thorn)

Pluggable

Elastic – grow and
shrink with demand

Components run in
one or more clouds
(public and private)

AppScale: Cloud Platform Portability

1+ multi-core system
potentially virtualized

background tasks

services

Distributed
datastores

controller/
schedulers

Pluggable

Elastic – grow and
shrink with demand

HBase, Hypertable,
MySQL, Cassandra,

Voldemort, MongoDB,
Scalaris, MemcacheDB,

others…

Transaction support

Call out to SimpleDB in
AWS and BigTable in
Google App Engine

Components run in
one or more clouds
(public and private)

Application
servers (Java,
Python, Thorn)

AppScale: Cloud Platform Portability

1+ multi-core system
potentially virtualized

background tasks

services

Distributed
datastores

controller/
schedulers

Pluggable

Elastic – grow and
shrink with demand

GAE APIs: Mail,
images, user,

messaging, tasks

As well as Hadoop,
MPI, X10, queues,

stochastic simulation

Others: R, Rhipe, Kull
graph processing,…

Components run in
one or more clouds
(public and private)

Application
servers (Java,
Python, Thorn)

Portable Cloud Platform Research
•  Hybrid cloud support

  Multi-cloud scheduling and scaling
  Employ services from different cloud systems concurrently

•  Multi-level monitoring and profiling
  Static and dynamic language runtimes, HPMs, system level
  Feedback directed optimization, scaling (up/down), ld balancing

•  Transparent, portable execution
  Laptop, your cluster, public and private clouds

•  New application domains
  HPC services & libraries, map-reduce, large-scale data analytics

•  Cloud language support
  For new and extant languages, cloud specific functionality

Challenges to Modern Distributed Systems
•  Traditional distributed systems problems

  Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

  Integrated development, programmer productivity
  Configuration & deployment
  Isolation & quality of service
  Monitoring, performance profiling, debugging
  Performance optimization, scaling, & energy efficiency

  Only now, we need support for
 Multiple languages and their runtime systems
 Interoperation with extant services, software, systems
 Pay-per-use (SLAs), cost (monetary, power/energy, time)
 Portable execution on disparate software infrastructures

Challenges to Modern Distributed Systems
•  Traditional distributed systems problems

  Fault tolerance/discovery, naming, scheduling/load balancing,
synchronization, communication, compute/data locality

  Integrated development, programmer productivity
  Configuration & deployment
  Isolation & quality of service
  Monitoring, performance profiling, debugging
  Performance optimization, scaling, & energy efficiency

  Only now, we need support for
 Multiple languages and their runtime systems
 Interoperation with extant services, software, systems
 Pay-per-use (SLAs), cost (monetary, power/energy, time)
 Portable execution on disparate software infrastructures

Efficient Cross-Language Communication
•  Interoperating components can be executing…

Python
Runtime

Java
Runtime

Python
Runtime

Java
Runtime

OS OS

OS OS

Serialization of
objects (for RPC
& messaging)

Network
Network Stack

Virtualization

Physical
machine

Virtual
Machine

(GuestVM)

Distinct physical machines

Python
Runtime

Java
Runtime

Python
Runtime

Java
Runtime

Python
Runtime

Java
Runtime

Python
Runtime

Java
Runtime

Python
Runtime

Java
Runtime

OS

OS OS

OS OS

OS OS

OS

Serialization of
objects (for RPC
& messaging)

Network
Network Stack

Virtualization

Physical
machine

Virtual
Machine

(GuestVM)

Distinct physical machines

Same physical machine
(co-located)

Cross-language Communication & Coordination
•  Python, Javascript, Perl, PHP, Ruby, Java, C/C++, .Net, …
•  Cross-language/process communications technology

  RPC, messaging
 Thrift, HTTP/s, REST, SOAP, RPC, COM, SIP, SWIG, CORBA
 For more than just web services: Map-Reduce (MR), MR-

streaming, MPI

  Data exchange formats
 Protocol Buffers, XML, JSON

  Benefits from these technologies
 Programmer productivity

  Abstraction, portability, copy semantics

  Limitations
 Require serialization and encoding of data/objects
 Network communication

Python
Runtime

Java
Runtime

Python
Runtime

Java
Runtime

Python
Runtime

Java
Runtime

Python
Runtime

Java
Runtime

Python
Runtime

Java
Runtime

OS

OS OS

OS OS

OS OS

OS

Serialization of
objects (for RPC
& messaging)

Network
Network Stack

Virtualization

Physical
machine

Virtual
Machine

(GuestVM)

Distinct physical machines

Same physical machine
(co-located)

Cross-language Communication & Coordination
•  Python, Javascript, Perl, PHP, Ruby, Java, C/C++, .Net, …
•  Cross-language/process communications technology

  RPC, messaging
 Thrift, HTTP/s, REST, SOAP, RPC, COM, SIP, SWIG, CORBA
 For more than just web services: Map-Reduce (MR), MR-

streaming, MPI

  Data exchange formats
 Protocol Buffers, XML, JSON

  Exploit co-location of runtimes and virtual machines
 CoLoRS – Co-Located Runtime Sharing (OOPSLA’10)

  Transparent / automatic replacement of high overhead RPC
and messaging protocols

  Direct, type-safe object sharing across language runtimes is also
possible

Java
process

Python
process

Private Heap Private Heap

co-located on a
multi-core system

CoLoRS server process

Shared Classes

Shared Heap

Java
threads

Python
threads

CoLoRS GC
threads

Private Classes Private Classes

Co-located Runtime Sharing (CoLoRS)

CoLoRS Contributions
•  Object and memory model

  Objects and classes shared between programs written in
dynamic and static languages

  Static-dynamic hybrid – fast yet flexible

•  Type system
  Preserves language-specific type-safety w/o new type rules

•  Shared-memory garbage collector
  Parallel, concurrent, on-the-fly GC that guarantees termination

 No system-wide pauses, non-moving

•  Synchronization in shared-memory
  Simple, fast, yet same semantics as monitor synchronization

•  CoLoRS support for HotSpot, cPython, and C++
  Requires runtime modification, C++ source2source translation

CoLoRS Evaluation: Microbenchmarks
•  Four cross-language RPC systems

  Python client; Java server
  Employ primitive and user-defined data types

0

20

40

60

80

100

CORBA Protocol
Buffers

REST Thrift

0

20

40

60

80

100

CORBA Protocol
Buffers

REST Thrift

Throughput Latency

Average: 39x

Average: 35x

[x CoLoRS improvement] [x CoLoRS improvement]

CoLoRS Evaluation: Overhead
•  MRE virtualization impacts performance

  Field access, method calls, synchronization, write barriers,
allocation, GC, core libraries

•  CoLoRS-oblivious programs: standard Java and Python
benchmarks

0
1
2
3
4
5
6

DaCapo JBB pybench shootout Ex
ec

ut
io

n
tim

e
ov

er
he

ad
 [

%
]

Overhead is
below 9% and
5% on average

Summary
•  Distributed system support for easy deployment, scale

  Cloud computing – remote access to cpu/storage/networking
  Open source systems for private/hybrid cloud use

 Bring benefits of cloud computing to local cluster resources
 Support interfaces of popular public/proprietary clouds
 Single platform for write-once, run-anywhere distributed apps

•  Multi-language, multi-component software is here to stay
  Dynamic and static languages must interoperate efficiently
  Efficient technologies for cross-runtime communication

 RPC, message-passing, object sharing via shared memory

•  Together offer potential for new research and technological
advance in high-performance and scalable computing
  Profiling, optimization, scaling, scheduling, communication,

languages, development/deployment, …

Thanks!
•  Students and Visitors!

  Chris Bunch, Jovan Chohan, Navraj Chohan, Nupur Garg, Matt
Hubert, Jonathan Kupferman, Puneet Lakhina, Yiming Li, Nagy
Mostafa, Yoshihide Nomura (Fujitsu), Raviprakash
Ramanujam, Michal Weigel

•  Support
  Google, IBM Research, National Science Foundation

 http://www.cs.ucsb.edu/~racelab
 http://appscale.cs.ucsb.edu/

