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Modern Software & Systems: Recent Changes  
•  Hardware/architecture evolution 

  Low cost, high performance, memory-rich, multicore, 
virtualization support 

•  Distributed cluster computing 
  Web services, parallel/concurrent tasks, virtualized clusters 

(guestVMs), cloud computing 

•  The people who are developing applications/software 
  Productivity programmers vs specialists/experts 

•  Software as components, modules, tiers 
  Isolated via runtime and potentially virtual machine monitor 
  Reuse, mobility, multiple levels of fault tolerance, isolation 
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Modern Software and Systems  
•  Hardware/architecture evolution 
•  Distributed cluster computing 

•  Software as components, modules, tiers 
  Executed within own runtime and/or guestVM 

 Reuse, mobility, process-level fault tolerance, isolation 

  Multi-language -- Web 2.0, web services, cloud systems 
 Presentation layer: Javascript, Ruby, Java, Python 
 Server-side logic: PHP, Perl, Java, Python, Ruby 
 Computation: MapReduce streaming (multi-language) 
 Database, key-value store: C++, Java, + query languages 

  Next-generation distributed systems require support for   
 HPC: Python, Ruby, R  --  with C, C++ 
 Concurrency: Thorn, X10 

  Frameworks, IDES facilitate development and deployment 



Modern Software and Systems  
•  Hardware/architecture evolution 
•  Distributed cluster computing 
•  Software as components, modules, tiers 

  Reuse, mobility, multi-level fault tolerance, isolation 

Applet 

J2SE 

Applet 
Container 

EJB 

Application 
Container 

Database 
Engine 

RMI 
CORBA 

XML  
JNDI 

JDBC HTTP 
TCP/IP 

SQL 

Traditional Java Enterprise / Web 1.0 

J2SE 
J2EE J2EE 

J2SE 

JSP 

Web 
Container 

Servlet 

J2SE 
J2EE 

1+ multi-core system 
tier co-location or distribution 



Modern Software and Systems  
•  Hardware/architecture evolution 
•  Distributed cluster computing 
•  Software as components, modules, tiers 

  Reuse, mobility, multi-level fault tolerance, isolation 
  Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,…  

Presentation 
support 

Computation, 
data/fs support 

Database/
datastore 

RPC and 
messaging 

HTTP 
TCP/IP 

Server logic 

1+ multi-core system 
tier co-location or distribution 

RPC and 
messaging 



Modern Software and Systems  
•  Hardware/architecture evolution 
•  Distributed cluster computing 
•  Software as components, modules, tiers 

  Reuse, mobility, multi-level fault tolerance, isolation 
  Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,…  

Presentation 
support 

Computation, 
data/fs support 

Database/
datastore 

RPC and 
messaging 

HTTP 
TCP/IP 

Server logic 

1+ multi-core system 
tier co-location or distribution 

RPC and 
messaging 



Modern Software and Systems  
•  Hardware/architecture evolution 
•  Distributed cluster computing 
•  Software as components, modules, tiers, guestVMs 

  Reuse, mobility, multi-level fault tolerance, isolation 
  Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,… 

 Within and across VMs 

1+ multi-core system 
VM co-location or distribution 

Guest VM 
RPC and 

messaging 

Guest VM Guest VM 

Hardware virtualization support: 

RPC and 
messaging 



Modern Software and Systems  
•  Hardware/architecture evolution 
•  Distributed cluster computing 
•  Software as components, modules, tiers, guestVMs 

  Reuse, mobility, multi-level fault tolerance, isolation 
  Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,… 

 Within and across VMs 

Guest VM 
RPC and 

messaging 

Guest VM Guest VM 

Hardware virtualization support: 

RPC and 
messaging 



Modern Software and Systems  
•  Hardware/architecture evolution 
•  Distributed cluster computing 
•  Software as components, modules, tiers, guest VMs 

  Reuse, mobility, multi-level fault tolerance, isolation 
  Multi-language: Javascript,Ruby,Java,Python,PHP,C/C++,*QL,… 

 Within and across VMs 

Guest VM 
RPC and 

messaging 

Guest VM Guest VM 

Hardware virtualization support: 

RPC and 
messaging 



Why One Language is Not Enough 
•  Programmer preference, expertise 
•  Amenability to addressing the particular problem that the 

component is designed to solve 
•  Library and framework support 
•  Speed of development 

  Fast prototyping, software understanding 
  Easy and transparent dynamic updates 
  Implementation, testing, debugging 
  SWE practice (agility, pairs) 

•  Performance 
•  Portability  

  Availability of language runtimes (interpreters) 

   Choosing one means accepting limitations for 1+ metrics 



Why One Language is Not Enough 
•  No one actually writes much code anymore… 

  Large numbers of programmers make their code available via 
the web (freely available and licensed open source) 
 Written in the language chosen by the author(s) 

•  Open source has experienced a surge in popularity, support, 
and participation 
  Participation by vast numbers of developers and users 

 Ideas for features, feedback, bug fixes 
 Short feedback/release loop 
 Online resources (FAQs, forums) provide searchable support 
 Potential for viral, wide-spread use, free advertising 

•  Free software (open APIs) 
  Mashups, cloud/web services, software-as-a-service 

•    Available packages, libraries 



Challenges to Modern Distributed Systems 
•  Traditional distributed systems problems 

  Fault tolerance/discovery, naming, scheduling/load balancing, 
synchronization, communication, compute/data locality 
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  Isolation & quality of service 
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  Performance optimization, scaling, & energy efficiency 
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Develop/Deploy-ment of Distributed Apps/Services 

•  What is your ideal? 
  Write-once, run anywhere  

 Laptop, local cluster, across multiple clusters 
 In public/hybrid clouds: Amazon AWS, Eucalyptus clusters, 

Google App Engine, Microsoft Azure, … others 

  Wide variety of scalable, high-performance services & libraries 
 Well-defined APIs 

  Aware of  
 Cost  
 Price-performance or price-scale 

  Automatic 
 Scaling (of different metrics) 
 Performance optimization and customization 

  Component level, parallelization, load-balancing, cost 

 Deployment and configuration of libraries and services 
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•  Leverage advances in cloud computing 
•  Cloud computing 

  Remote/easy access to distributed & shared cluster resources 
 Isolated CPUs, storage, networking, services made available via 

web interfaces 

  Culmination of grid/cluster/utility/elastic computing 
 Exploits advances in processor, virtualization, systems technology 

  Public: pay-per-use (service level agreements (SLAs)) 
 Users rent small fraction of resources owned by others 

  Amazon, Microsoft, Google, others… 

  Private: similar distributed system support for your cluster 
 Proprietary and open source options  



Cloud computing 
•  3 types: as-a-Service (aaS) 

  Infrastructure: Amazon Web Services (EC2, S3, EBS) 
 Virtualized, isolated (CPU, Network, Storage) systems on which 

users execute entire runtime stacks 
  Fully customer self-service 

 Open APIs (IaaS standard), scalable services 

  Platform: Google App Engine, Microsoft Azure 
 Scalable program-level abstractions via well-defined interfaces 
 Enable construction of network-accessible applications 
 Process-level (sandbox) isolation, complete software stack 

  Software: Salesforce.com 
 Applications provided to thin clients over a network 
 Customizable 
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 Proprietary (cost), closed implementations 

  Open source  
 Infrastructure only (fully user self-service customization, 

deployment, etc.) – not necessarily developer focused 

☹ Lots of non-standard APIs! 



Our Approach: Portable Cloud Platform 
•  Leverage advances in cloud computing 
•  AppScale (http://appscale.cs.ucsb.edu) 

  Implementation of different extant cloud APIs 
 Using different programming languages 
 Starting place: Google App Engine (GAE) – familiarity, users, apps 

  Execution over  
 Cloud infrastructures: Amazon Web Services, Eucalyptus 
 Cloud platforms: GAE, Azure (under development) 
 Virtualization layers: Xen, KVM, none 

  Automatic 
 Configuration and deployment of libraries and services 
 Monitoring of distributed system performance data 

  Test drive in a private setting before moving to a public cloud 
 Evaluate different cloud services 
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GAE APIs: Mail, 
images, user, 

messaging, tasks 

As well as Hadoop, 
MPI, X10, queues, 

stochastic simulation 

Others: R, Rhipe, Kull 
graph processing,… 
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Portable Cloud Platform Research 
•  Hybrid cloud support 

  Multi-cloud scheduling and scaling 
  Employ services from different cloud systems concurrently 

•  Multi-level monitoring and profiling 
  Static and dynamic language runtimes, HPMs, system level 
  Feedback directed optimization, scaling (up/down), ld balancing 

•  Transparent, portable execution 
  Laptop, your cluster, public and private clouds 

•  New application domains 
  HPC services & libraries, map-reduce, large-scale data analytics 

•  Cloud language support 
  For new and extant languages, cloud specific functionality 
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Efficient Cross-Language Communication 
•  Interoperating components can be executing… 
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Cross-language Communication & Coordination 
•  Python, Javascript, Perl, PHP, Ruby, Java, C/C++, .Net, … 
•  Cross-language/process communications technology 

  RPC, messaging 
 Thrift, HTTP/s, REST, SOAP, RPC, COM, SIP, SWIG, CORBA 
 For more than just web services: Map-Reduce (MR), MR-

streaming, MPI 

  Data exchange formats 
 Protocol Buffers, XML, JSON 

  Benefits from these technologies 
 Programmer productivity 

  Abstraction, portability, copy semantics 

  Limitations 
 Require serialization and encoding of data/objects 
 Network communication 
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Cross-language Communication & Coordination 
•  Python, Javascript, Perl, PHP, Ruby, Java, C/C++, .Net, … 
•  Cross-language/process communications technology 

  RPC, messaging 
 Thrift, HTTP/s, REST, SOAP, RPC, COM, SIP, SWIG, CORBA 
 For more than just web services: Map-Reduce (MR), MR-

streaming, MPI 

  Data exchange formats 
 Protocol Buffers, XML, JSON 

  Exploit co-location of runtimes and virtual machines 
 CoLoRS – Co-Located Runtime Sharing (OOPSLA’10) 

  Transparent / automatic replacement of high overhead RPC 
and messaging protocols 

  Direct, type-safe object sharing across language runtimes is also 
possible 
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CoLoRS Contributions 
•  Object and memory model 

  Objects and classes shared between programs written in 
dynamic and static languages 

  Static-dynamic hybrid – fast yet flexible 

•  Type system 
  Preserves language-specific type-safety w/o new type rules 

•  Shared-memory garbage collector 
  Parallel, concurrent, on-the-fly GC that guarantees termination 

 No system-wide pauses, non-moving 

•  Synchronization in shared-memory 
  Simple, fast, yet same semantics as monitor synchronization 

•  CoLoRS support for HotSpot, cPython, and C++ 
  Requires runtime modification, C++ source2source translation 



CoLoRS Evaluation: Microbenchmarks 
•  Four cross-language RPC systems 

  Python client; Java server 
  Employ primitive and user-defined data types  
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CoLoRS Evaluation: Overhead 
•  MRE virtualization impacts performance 

  Field access, method calls, synchronization, write barriers, 
allocation, GC, core libraries 

•  CoLoRS-oblivious programs: standard Java and Python 
benchmarks 
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Summary 
•  Distributed system support for easy deployment, scale 

  Cloud computing – remote access to cpu/storage/networking 
  Open source systems for private/hybrid cloud use 

 Bring benefits of cloud computing to local cluster resources 
 Support interfaces of popular public/proprietary clouds 
 Single platform for write-once, run-anywhere distributed apps 

•  Multi-language, multi-component software is here to stay 
  Dynamic and static languages must interoperate efficiently 
  Efficient technologies for cross-runtime communication 

 RPC, message-passing, object sharing via shared memory 

•  Together offer potential for new research and technological 
advance in high-performance and scalable computing 
  Profiling, optimization, scaling, scheduling, communication, 

languages, development/deployment, … 



Thanks! 
•  Students and Visitors! 

  Chris Bunch, Jovan Chohan, Navraj Chohan, Nupur Garg, Matt 
Hubert, Jonathan Kupferman, Puneet Lakhina, Yiming Li, Nagy 
Mostafa, Yoshihide Nomura (Fujitsu), Raviprakash 
Ramanujam, Michal Weigel 

•  Support 
  Google, IBM Research, National Science Foundation 

   http://www.cs.ucsb.edu/~racelab 
   http://appscale.cs.ucsb.edu/ 


