
THE VERSATILE ACTOR:
TOWARD COMPOSITIONAL
PROGRAMMING OF
DISTRIBUTED APPLICATIONS

John Field, IBM Research © 2010 IBM PsiEta 2010

Collaborators
2

  Actors
  Carlos Varela

  Thorn
  Bard Bloom
  Brian Burg
  Jakob Dam
  Julian Dolby
  Nate Nystrom
  Johan Östlund
  Gregor Richards
  Ignacio Solla Paula
  Rok Strniša
  Emina Torlak
  Tobias Wrigstad
  Jan Vitek

What do these apps have in common?
3

Common threads

  collection of distributed components...
  ...loosely coupled by messages, persistent data
  irregular concurrency, driven by real-world data

(“reactive”)
  high data volumes
  fault-tolerance important

4

Why are systems distributed?
5

  access to other administrative domains with proprietary
data and data processing capabilities

  sharing data among multiple users or administrative
domains

  scalability via networked compute and storage
resources

  isolation for fault containment
  redundancy (data or compute) for handling network

partition or node failures
  reduced latency by bringing computation closer to

human users or physical devices that access it

6

Distributed apps are now the norm

How should our programming
models adapt to this new reality?

Why is this interesting/challenging?

Distributed systems...back in the day
7

  clear distinction between "clients" and "servers"
  servers implemented standard services

  database queries
 NFS file access
  FTP
  simple HTTP requests
  ...

  most sophisticated code on "server" side
  e.g., for clustering
  inter-node code written mostly by systems gurus

  application-specific APIs to access standard services

Contrast with...
8

search
indexer

web
gateway

page
handler

page
handler

page
handler

page
handler

user acct DB
tweet

backup DB

memcache
partition

memcache
partition

memcache
partition

mobile
gateway

mobile
gateway

advertising
feed

Twitter and similar "web2.0" applications

Distributed systems today
9

  complex network of interconnected services
  variety of availability/reliability requirements
  distinction between "client" and "server" increasingly

unclear
  many administrative domains...
  ...not all of them are your friends

A distributed system is one in
which the failure of a computer
you didn't even know existed

can render your own computer
unusable

Leslie Lamport

10

Error 500
An error has occured while processing request:https://www.namelesswebsite.com/ErrorReporter
Message: Server caught unhandled exception from servlet [JSP 1.1 Processor]: null

Target Servlet: JSP 1.1 Processor
StackTrace: Root Error-1:
java.lang.NullPointerException
 at Proxy._eProxyGetAccount_jsp_0._jspService(_eProxyGetAccount_jsp_0.java:78)
 at org.apache.jasper.runtime.HttpJspBase.service(HttpJspBase.java(Compiled Code))
 at javax.servlet.http.HttpServlet.service(HttpServlet.java(Compiled Code))
 at org.apache.jasper.runtime.JspServlet$JspServletWrapper.service(JspServlet.java(Compiled Code))
 at org.apache.jasper.runtime.JspServlet.serviceJspFile(JspServlet.java(Compiled Code))
 at org.apache.jasper.runtime.JspServlet.service(JspServlet.java(Compiled Code))
 at javax.servlet.http.HttpServlet.service(HttpServlet.java(Compiled Code))
 at com.ibm.servlet.engine.webapp.StrictServletInstance.doService(ServletManager.java(Compiled Code))
 at com.ibm.servlet.engine.webapp.StrictLifecycleServlet._service(StrictLifecycleServlet.java(Compiled Code))
 at com.ibm.servlet.engine.webapp.IdleServletState.service(StrictLifecycleServlet.java(Compiled Code))
 at com.ibm.servlet.engine.webapp.StrictLifecycleServlet.service(StrictLifecycleServlet.java(Compiled Code))
 at com.ibm.servlet.engine.webapp.ServletInstance.service(ServletManager.java(Compiled Code))
 at com.ibm.servlet.engine.webapp.ValidServletReferenceState.dispatch(ServletManager.java(Compiled Code))
 at com.ibm.servlet.engine.webapp.ServletInstanceReference.dispatch(ServletManager.java(Compiled Code))
 …

eCommerce ca. 2002:
Wanted: 2 different pairs of kid’s sneakers from namelesswebsite.com

Thank You For Your Order!
Please Visit Us Again.

Failures have consequences

11

Results
  3 pairs of shoes…

  …all the same

  credit card charges for 4 pairs

Failures have consequences

Failures are e'er with us
12

Composing functionality in the presence
of failures can be problematic

13

  consider:
 composing a fast, high availability component...
  ...with a slow, fault-tolerant replicated server

Alas, you can't have it all

  In fact, you can only
have two out of the
following three*
 consistency
 availability
 partition-tolerance

14

*Eric Brewer, Toward Robust Distributed Systems, 2000
(example due to Julian Browne)

N1 A V0

N2 A V0

V1

m

V1

V1

V1 V0

15

ZIP code
City State

Submit

Zip Database

Zip Lookup
Servlet

Form Submission
Servlet

Merchant Credit
Server

User Credit
Servers

Form + JavaScript Code

ZIP code
City State

Credit Card Number

Submit

Distributed programming can get ugly

A simple AJAX web app

16

<?php
/**
 * Connects to the database.
 * Return false if connection failed.
 */
function db_connect() {
 $database_name = 'mysql'; // Set this to your Database Name
 $database_username = 'root'; // Set this to your MySQL username
 $database_password = ''; // Set this to your MySQL password
 $result = mysql_pconnect('localhost',$database_username, $database_password);
 if (!$result) return false;
 if (!mysql_select_db($database_name)) return false;
 return $result;
}
$conn = db_connect(); // Connect to database
if ($conn) {
 $zipcode = $_GET['param']; // The parameter passed to us
 $query = "select * from zipcodes where zipcode = '$zipcode'";
 $result = mysql_query($query,$conn);
 $count = mysql_num_rows($result);
 if ($count > 0) {
 $city = mysql_result($result,0,'city');

 $state = mysql_result($result,0,'state');
 }
}
if (isset($city) && isset($state)) {
 // $return_value = $city . "," . $state;
 $return_value = '<?xml version="1.0" standalone="yes"?><zip><city>'.$city.'</city><state>'.$state.'</state></zip>';
}
else {
 $return_value = "invalid".",".$_GET['param']; // Include Zip for debugging purposes
}
header('Content-Type: text/xml');
echo $return_value; // This will become the response value for the XMLHttpRequest object
?>6

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd">!
<html xmlns="http://www.w3.org/1999/xhtml" >!
<head>!
<title>ZIP Code to City and State using XmlHttpRequest</title>!
<script language="javascript" type="text/javascript">!
var url = "getCityState.php?param="; // The server-side script!
function handleHttpResponse() {!
 if (http.readyState == 4) {!
 if (http.responseText.indexOf('invalid') == -1) {!
 // Use the XML DOM to unpack the city and state data !
 var xmlDocument = http.responseXML; !
 var city = xmlDocument.getElementsByTagName('city').item(0).firstChild.data;!
 var state = xmlDocument.getElementsByTagName('state').item(0).firstChild.data;!
 document.getElementByID'city').value = city;!
 document.getElementById('state').value = state;!
 isWorking = false;!
 }!
 }!
}!
var isWorking = false;!
function updateCityState() {!
 if (!isWorking && http) {!
 var zipValue = document.getElementById("zip").value;!
 http.open("GET", url + escape(zipValue), true);!
 http.onreadystatechange = handleHttpResponse;!
 isWorking = true;!
 http.send(null);!
 }!
}!

function getHTTPObject() {
 var xmlhttp;
 /*@cc_on
 @if (@_jscript_version >= 5)
 try {
 xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");
 } catch (e) {
 try {
 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (E) {
 xmlhttp = false;
 }
 }
 @else
 xmlhttp = false;
 @end @*/
 if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {
 try {
 xmlhttp = new XMLHttpRequest();

 xmlhttp.overrideMimeType("text/xml");
 } catch (e) {
 xmlhttp = false;
 }
 }
 return xmlhttp;
}
var http = getHTTPObject(); // We create the HTTP Object
</script>
</head>
<body>
<form action="post">
 <p>
 ZIP code:
 <input type="text" size="5" name="zip" id="zip" onblur="updateCityState();" />
 </p>
 City:
 <input type="text" name="city" id="city" />
 State:
 <input type="text" size="2" name="state" id="state" />
</form>
</body>
</html>

Table structure for table `zipcodes`

CREATE TABLE `zipcodes` (
 `zipcode` mediumint(9) NOT NULL default '0',
 `city` tinytext NOT NULL,
 `state` char(2) NOT NULL default '',
 `areacode` smallint(6) NOT NULL default '0',
 PRIMARY KEY (`zipcode`),
 UNIQUE KEY `zipcode_2` (`zipcode`),
 KEY `zipcode` (`zipcode`)
) TYPE=MyISAM;

babble of
languages

same logical data;
many different

physical
representations

concurrency (UI events,
sever interaction) buried

deep in APIs

no code
encapsulation, no

interfaces

Code snippet for AJAX UI

Can't we just adapt existing
programming models for distribution?

problem: single address
space programming
concepts cannot be
repurposed*
  latency
  identity: local vs. global
  partial failure
  ubiquitous concurrency

17

*Waldo et al., A Note on Distributed Computing, 1994

while (true) {
 try {
 table->remove(name);
 break;
 }
 catch (NotFound) {
 break;
 }
 catch (NetworkServerFailure) {
 continue;
 }
}

What's wrong with accessing
distributed services via libraries?

18

  problem: neither programmer nor runtime can
readily reason about composition of components

  each library handles common distribution issues
(timeouts, acknowledgments, ...) differently

But beware of baking in too much*
19

  don't make developers pay for functionality they
don't need

  e.g.:
  reliable message delivery in system substrate is both

redundant and expensive...
  ...if sender of message needs acknowledgment that

receiver processed the message correctly anyway

*Saltzer et al., End-to-end Arguments in System Design, 1984

What do we want in a distributed
programming model?

20

  allows sufficient control of low-level behavior to
tune performance and reliability

  doesn't require ubiquitous, expensive functionality
(end-to-end argument)

  doesn't suffer from Waldo et al's pathologies...
  ...but allows reuse of familiar programming

concepts when appropriate

Proposed way forward: Actor model
21

  originally defined by Hewitt et al.* in '73 to model
properties of certain AI planners...

 then developed as a general distributed programming
model by others, particularly Agha

  has gone in and out of fashion
  realized in a wide variety of languages, e.g.:

  Erlang
  Salsa
  Scala
  Axum
  ...

  our implementation is called Thorn

*Hewitt et al., A Universal Modular Actor Formalism for Artifial Intelligence, 1973

Actor basics

  actor is a single-threaded stateful process
  collection of actors form a program/

system
  state of one actor not (directly) accessible

by another: isolation
  every actor has a unique name
  actor names are data
  actors communicate by sending messages

to one another
  messages sent asynchronously: sender does

not block awaiting receipt
  actor names may be sent as messages

  received messages managed by a
(conceptually unbounded) mailbox
  no message ordering guarantee

  in response to a message, an actor may:
  update its state
  create new actors (and remember their

names)
  send messages

22

m2 m1

m3

Actor variants
23

  mechanisms for updating state
  functional (state passed as continuation between messages)
  imperative (state explicitly mutated between messages)

  message delivery may or may not be guaranteed
  explicit "peeking" into mailbox may or may not be

allowed
  explicit or implicit message receipt
  infinite behaviors (e.g., sending unbounded numbers of

messages) may or may not be allowed
  ordered or unordered (implicitly concurrent) actions on

message receipt

Actor and distribution
24

  actor topologies are highly dynamic
  communication topology is dynamic, since names may be sent as

messages
  set of actors can grow dynamically via creation

  asynchronous messaging allows behaviors of sender and
receiver to be decoupled

  actors are oblivious to locality
  but actors running on same node, or same address space

amenable to many optimizations
  concurrency

  data races are impossible
  messsage waiting deadlocks are possible, but arise via poor

protocol design, not unfortunate scheduling decisions

An open source, agile, high performance language for
concurrent/distributed applications and reactive

systems

Key research directions

  code evolution: language, runtime, tool support for transition
from prototype scripts to robust apps

  efficient compilation: for a dynamic language on a JVM
  cloud-level optimizations: high-level optimizations in a

distributed environment
  security: end-to-end security in a distributed setting
  fault-tolerance: provide features that help programmers write

robust code in the presence of hardware/software faults

25

Our actor language: Thorn

Features
  isolated, concurrent,

communicating processes
  lightweight objects
  first-class functions
  explicit state...
  ...but many functional features
  powerful aggregate datatypes
  expressive pattern matching
  dynamic typing
  lightweight module system
  JVM implementation and Java

interoperability
  gradual typing system

(experimental)

Non-features
  changing fields/methods of

objects on the fly

  introspection/reflection

  serialization of mutable objects/
references or unknown classes

  dynamic code loading

26

Features, present and absent

  Open source: http://www.thorn-lang.org
  Interpreter for full language
  JVM compiler for language core

 no sophisticated optimizations
 performance comparable to Python
 currently being re-engineered

  Initial experience
 web apps, concurrent kernels, compiler, ...

  Prototype of (optional) type annotation system

27

Thorn status

28

for (l <- argv()(0).file().contents().split("\n"))
 if (l.contains?(argv()(1))) println(l);

file i/o methods

no explicit decl needed for var

split string into list

iterate over elements of a list

access command-line args

usual library functions on lists

Simple Thorn script

DEMO

29

primitive object: data/
method bundle

user-defined
object

class-
defined

anonymous

class

javaly

function built-in

immutable
primitive

null

int

string

char

component ref

...

immutable
aggregate

list

record

mutable
aggregate

table

map

ordered

30

classes are
generators of
objects, not
types (per se)

Thorn data taxonomy

  no reflection, eval, dynamic code loading
  alternatives for most scenarios

  ubiquitous patterns
  for documentation
  to generate efficient code

  powerful aggregates
  allow semantics-aware optimizations

  easy upgrade path from simple scripts to reusable code
  simple records → encapsulated classes

  modules
  easy to wrap scripts, hide names

  experimental gradual typing system

31

Thorn features for more robust scripting

  adverbial ping-pong
  two players
  play by describing how you hit the ball
  distributed
  each player runs exactly the same code

*minimalist multiplayer online role-playing game

32

A MMORPG*

MMORPG message flow

Player 1 Player 2

happily

eagerly

quickly

sluggishly

snickering

bouncing it off her head

33

DEMO
MMORPG

34

35

Site A

component 1

component 2

component 3

component 4

Site B

component 5

component 6

component 7

component 8

•  sites model physical application distribution
(implemented as one JVM per site)

•  I/O and other resources managed by sites
•  failures managed by sites
•  components can be spawned at remote sites
•  optimizations for intra-site messaging,

concurrency

•  components are Thorn processes
•  components can spawn other

components (at the same site)
•  processes communicate by

message passing
•  intra- and inter-site messaging

works the same way

Thorn refines actors with sites

Anatomy of a component
36

component

module ... module

(optional channel definitions)

body

message
queue
(bag)

message

• statement executed when
component is spawned (usually a
loop)

• component execution ends when
body ends

• defines the component’s code and
state

• loaded and initialized when
component is spawned

MMORPG Code
37

// MMORPG code for both players!

spawn {!

 var done := false;!

 body { !
 [name, otherURI] = argv();!
 otherSite = site(otherURI);!

 fun play(hit) {!
 advly = readln("Hit how?");!
 done := advly == "";!
 if (done) {!
 println("You lose!");!
 otherSite <<< null;!
 }!
 else {!
 otherSite <<< !
 "$name $`hit`s the ball $advly.";!
 }!
 }!

 start =!
 thisSite().str < otherSite.str;!

 if (start) play("serve");!

 do {!
 receive {!
 msg:string => {!
 println(msg);!
 play("return");!
 }!
 | null => {!
 println("You win!");!
 done := true;!
 }!
 }!
 } until (done);!
 }!

};!

spawn an isolated
component (process)

mutable
component-scoped
variable

function
decl

send a message
(any immutable
datum)

convert URI into
component ref

receive messages
matching pattern

pattern variable
(with type
constraint)

interpolate data
into string

constant pattern

immutable
component-scoped
variable

Thorn design philosophy

  steal good ideas from everywhere
  (ok, we invented some too)
  aiming for harmonious merge of features
  strongest influences: Erlang, Python (but there are many others)

  assume concurrency is ubiquitous
  this affects every aspect of the language design

  adopt best ideas from scripting world...
  dynamic typing, powerful aggregates, ...

  ...but seduce programmers to good software engineering
  powerful constructs that provide immediate value
  optional features for robustness
  encourage use of functional features when appropriate
  no reflective or self-modifying constructs

38

  scripts already handle concurrency (but not especially well)

  dynamic typing allows code for distributed components to evolve
independently…code can bend without breaking

  rich collection of built-in datatypes allows components with
minimal advance knowledge of one another’s information
schemas to communicate readily

  powerful aggregate datatypes extremely handy for managing
component state

  associative datatypes allow distinct components to maintain
differing “views” of same logical data

39

Scripting + concurrency: ? …or… !

Cheeper: Twitter in a few lines of code

client 1 server client 2

chirp(”Numbers!")! chirp(
”Spice

s!")!

You ch
irped

"…"!
You chirped "…"!

read()!

[<…>,<
…>]!

40

Cheeper client code
spawn chclient {!

import CHEEPER.*;!

server = site(argv()(0));!

fun help() {!

 println("? = help");!

 println("/ = read");!

 println("+N = vote for");!

 println("-N = vote against");!

 println("other = chirp that");!

 }!

fun read() {!

 c's = server <-> read();!

 for(<chirp, plus, minus> <- c's) {!

 println(!

 "$chirp [+$plus/-$minus]");!

 }!

 }!

body {!

 println("Welcome to Cheeper!");!

 println("? for help");!

 user = readln("Who are you? ");!

 while(true) {!

 s = readln("Chirp: ");!

 match(s)!

 "?" => help()!

 | "/" => read()!

 | "\\+([0-9]+)" / [.int(n)] => !

 println(server <-> vote(n, true))!

 | "\\-([0-9]+)" / [.int(n)] => !

 println(server <-> vote(n, false))!

 | _ => !

 println(server <-> chirp!(s,user))!

 }!

}!

}!

41

Cheeper server code
spawn chserver {!

import CHEEPER.*;!

users = table(user)<var chirps>;!

chirps = table(n)<chirp, var plus, minus>;!

sync chirp!(text, user){!

 n = chirps.num;!

 c = Chirp(text,user,n);!

 chirps(n) :=!

 < chirp=c, !

 plus=0, !

 minus=0 >;!

 if (users.has?(user)) !

 users(user).chirps ::= c!

 else !

 users(user) := < chirps=[c] >;!

 "You chirped '$c'"!

 }!

fun love(<plus, minus>) = plus - minus;!

sync read() = !

 sort[row!

 incrby love(row)!

 decrby chirp.n !

 | for row && <chirp> <- chirps];!

sync vote(n, plus?) {!

 if (plus?) !

 chirps(n).plus += 1!

 else !

 chirps(n).minus += 1;!

 "Thanks"!

 }!

body{!

 println("Cheeper server here!");!

 while(true) {!

 println("Server ready...");!

 serve;!

 }!

}!

}!

42

Augmenting basic actors with channel-
style communication

43

{

}

sync chirp!(text, user) {
 // sender blocks awaiting reply
}

async stopRightNow() {
 // sender expects no reply
}

...

body {
 while (true) serve;
}

 component

synchronous
communication

asynchronous
communication

body runs immediately
after component is
spawned

process one message

Channels are sugar on basic actor primitives

Channel-style communication

  server defines communications:

  RPC

  signal
  client can call these

  timeout option available on <->
  server determines when channels are interrogated

  ... timeout / administrative options.

sync chirp!(text,user) { ... }!

async stopRightNow() from $(root) prio 100 {...}!

response = server <-> chirp!("Hey!","Me")!

server <-- stopRightNow()!

serve // respond to one communication!

44

Further actor extensions for Thorn: work
in progress (I)

45

  local coordination: chords
  pattern on multiple mailbox messages
  inspired by join calculus, polyphonic C#

  local checkpoint/recovery
  sites can recognize failed components
  certain variables designated as stable; written through to

stable storage on every write
 init and reinit code blocks in component

 init establishes component invariants when component
starts

 reinit re-establishes invariants from stable variables
after a crash

Further actor extensions for Thorn: work
in progress (II)

46

  data access
  remote table: hybrid of table and component
  queries shipped to same site of remote table, executed in

own component

  capability-style security
  component as unit of trust, isolation
  piggyback on messaging

Actors vs. design desiderata

Waldo et al.
  latency?

  explicit distinction between cheap
local operations and potentially
expensive remote ones

  identity?
  only notion of global identity is actor

name

  ubiquitous concurrency?
  actors are inherently concurrent

  partial failure?
  distinction between local operations

and remote messages is helpful
  original actor model assumed

guaranteed message delivery; Thorn
does not

  original model made no assumptions
about node failure; Thorn assumes
possible

Saltzer et al
  are core features useful and cost-

effective?
  composition via name passing cheap

and natural for the internet
  asynchronous messaging is cheap and

unavoidable
  ability to dynamically spawn actors is

necessary for topology to evolve, and
can be made cheap

47

Cloud computing: state of the hype*
48

*Gartner Group, 2010

Is there something really new here?

  increasing disconnect between hardware
and software platforms

  virtual hardware, virtual language
runtimes, portable middleware

  ubiquitous network connectivity
  comfort with data/computation

“somewhere else”

  high-quality web UIs
  browser as universal GUI for remote

apps

  cost of wide-area networking has fallen
more slowly than other IT hardware costs
  economic necessity mandates putting

the data near the application [Gray,
2003]

  managed collection of (relatively) uniform
distributed resources

  the illusion of infinite computing resources
available on demand

  scaling down as important as scaling
up

Environmental factors New functionality

49

three sites, one "virtual"

50

 HTTP
gateway

memcache

 chirp
indexer

page
handler

page
handler

page
handler

page
handler

component
instantiated
dynamically per
HTTP request

 twitter app
API

Biggish Thorn app: WebCheeper

page
handler

page
handler

page
handler

page
handler

page
handler

page
handler

page
handler

page
handler

page
handler

page
handler

51

 HTTP
gateway

 twitter app
API

page
handler

 HTTP
gateway

 HTTP
gateway

page
handler

 AppScale
request

dispatcher

memcache here, thorn
components are
replicated and
deployed on
additional sites for
increased scalability chirp

indexer

inter-component and inter-
site optimizations may be
more consequential than
than intra-component
optimizations

WebCheeper on AppScale cloud
51

Replication: key to scalability and
fault-tolerance

52

  replicated compute servers
  replicated databases
  caching throughout the internet
  splitting disjoint data, disjoint services over multiple

nodes

  simple data splitting
  split components whose communications access disjoint data

  replicate stateless components
  as in WebCheeper example
  can arbitrarily replication components where state not

accessed across multiple communications
  speculative replication of stateful components

  when downstream peers are idempotent w.r.t. repeated
requests

  sharding
  split components with table state into multiple components,

multiple tables with disjoint key spaces
  possible when component accesses only a single table

record

Opportunity: recomposing actors for
cloud optimization I

53

  batch→stream
  replace pipeline of bulk data transformations with

parallel per-item transformations
  generalized map-reduce

  identify parallelizable queries, break into pipelines
  caching

  introduce intermediate components that store the results
of computations

 weak consistency replicated datastores (à la
Amazon Dynamo, Google BigTable)
 are they an instance of a more general paradigm?

Opportunity: recomposing actors for
cloud optimization II

54

  in addition to basic actor operations, a transactor t can:
  stabilize: enter a mode where t does not change its state (a non-

stable transactor is volatile)

  checkpoint: create a persistent copy of current state (restored after
restart from failure)
  checkpoint only allowed if t and transactors on which t depends

are stable
  t becomes volatile after checkpoint

  rollback: revert to t's last checkpointed state

  semantics maintains dependence information about peer
transactors

Transactor model: global checkpointing

*Field, Varela 2005

55

Summary
56

  actors are good match for Waldo and Saltzer's
desiderata

  thorn: pragmatic extension/interpretation of actor
model
  no assumption of message delivery
  site/component distinction
  explicitly imperative local computation
  channels as well as simple messages
  unbounded behaviors

  for the future: need more compositional tools
  that enable analysis of latency, failure modes
  enable CAP tradeoffs
  optimization through replication

Questions?

Thanks! 57

