
THE VERSATILE ACTOR:
TOWARD COMPOSITIONAL
PROGRAMMING OF
DISTRIBUTED APPLICATIONS

John Field, IBM Research © 2010 IBM PsiEta 2010

Collaborators
2

  Actors
  Carlos Varela

  Thorn
  Bard Bloom
  Brian Burg
  Jakob Dam
  Julian Dolby
  Nate Nystrom
  Johan Östlund
  Gregor Richards
  Ignacio Solla Paula
  Rok Strniša
  Emina Torlak
  Tobias Wrigstad
  Jan Vitek

What do these apps have in common?
3

Common threads

  collection of distributed components...
  ...loosely coupled by messages, persistent data
  irregular concurrency, driven by real-world data

(“reactive”)
  high data volumes
  fault-tolerance important

4

Why are systems distributed?
5

  access to other administrative domains with proprietary
data and data processing capabilities

  sharing data among multiple users or administrative
domains

  scalability via networked compute and storage
resources

  isolation for fault containment
  redundancy (data or compute) for handling network

partition or node failures
  reduced latency by bringing computation closer to

human users or physical devices that access it

6

Distributed apps are now the norm

How should our programming
models adapt to this new reality?

Why is this interesting/challenging?

Distributed systems...back in the day
7

  clear distinction between "clients" and "servers"
  servers implemented standard services

  database queries
 NFS file access
  FTP
  simple HTTP requests
  ...

  most sophisticated code on "server" side
  e.g., for clustering
  inter-node code written mostly by systems gurus

  application-specific APIs to access standard services

Contrast with...
8

search
indexer

web
gateway

page
handler

page
handler

page
handler

page
handler

user acct DB
tweet

backup DB

memcache
partition

memcache
partition

memcache
partition

mobile
gateway

mobile
gateway

advertising
feed

Twitter and similar "web2.0" applications

Distributed systems today
9

  complex network of interconnected services
  variety of availability/reliability requirements
  distinction between "client" and "server" increasingly

unclear
  many administrative domains...
  ...not all of them are your friends

A distributed system is one in
which the failure of a computer
you didn't even know existed

can render your own computer
unusable

Leslie Lamport

10

Error 500
An error has occured while processing request:https://www.namelesswebsite.com/ErrorReporter
Message: Server caught unhandled exception from servlet [JSP 1.1 Processor]: null

Target Servlet: JSP 1.1 Processor
StackTrace: Root Error-1:
java.lang.NullPointerException
 at Proxy._eProxyGetAccount_jsp_0._jspService(_eProxyGetAccount_jsp_0.java:78)
 at org.apache.jasper.runtime.HttpJspBase.service(HttpJspBase.java(Compiled Code))
 at javax.servlet.http.HttpServlet.service(HttpServlet.java(Compiled Code))
 at org.apache.jasper.runtime.JspServlet$JspServletWrapper.service(JspServlet.java(Compiled Code))
 at org.apache.jasper.runtime.JspServlet.serviceJspFile(JspServlet.java(Compiled Code))
 at org.apache.jasper.runtime.JspServlet.service(JspServlet.java(Compiled Code))
 at javax.servlet.http.HttpServlet.service(HttpServlet.java(Compiled Code))
 at com.ibm.servlet.engine.webapp.StrictServletInstance.doService(ServletManager.java(Compiled Code))
 at com.ibm.servlet.engine.webapp.StrictLifecycleServlet._service(StrictLifecycleServlet.java(Compiled Code))
 at com.ibm.servlet.engine.webapp.IdleServletState.service(StrictLifecycleServlet.java(Compiled Code))
 at com.ibm.servlet.engine.webapp.StrictLifecycleServlet.service(StrictLifecycleServlet.java(Compiled Code))
 at com.ibm.servlet.engine.webapp.ServletInstance.service(ServletManager.java(Compiled Code))
 at com.ibm.servlet.engine.webapp.ValidServletReferenceState.dispatch(ServletManager.java(Compiled Code))
 at com.ibm.servlet.engine.webapp.ServletInstanceReference.dispatch(ServletManager.java(Compiled Code))
 …

eCommerce ca. 2002:
Wanted: 2 different pairs of kid’s sneakers from namelesswebsite.com

Thank You For Your Order!
Please Visit Us Again.

Failures have consequences

11

Results
  3 pairs of shoes…

  …all the same

  credit card charges for 4 pairs

Failures have consequences

Failures are e'er with us
12

Composing functionality in the presence
of failures can be problematic

13

  consider:
 composing a fast, high availability component...
  ...with a slow, fault-tolerant replicated server

Alas, you can't have it all

  In fact, you can only
have two out of the
following three*
 consistency
 availability
 partition-tolerance

14

*Eric Brewer, Toward Robust Distributed Systems, 2000
(example due to Julian Browne)

N1 A V0

N2 A V0

V1

m

V1

V1

V1 V0

15

ZIP code
City State

Submit

Zip Database

Zip Lookup
Servlet

Form Submission
Servlet

Merchant Credit
Server

User Credit
Servers

Form + JavaScript Code

ZIP code
City State

Credit Card Number

Submit

Distributed programming can get ugly

A simple AJAX web app

16

<?php
/**
 * Connects to the database.
 * Return false if connection failed.
 */
function db_connect() {
 $database_name = 'mysql'; // Set this to your Database Name
 $database_username = 'root'; // Set this to your MySQL username
 $database_password = ''; // Set this to your MySQL password
 $result = mysql_pconnect('localhost',$database_username, $database_password);
 if (!$result) return false;
 if (!mysql_select_db($database_name)) return false;
 return $result;
}
$conn = db_connect(); // Connect to database
if ($conn) {
 $zipcode = $_GET['param']; // The parameter passed to us
 $query = "select * from zipcodes where zipcode = '$zipcode'";
 $result = mysql_query($query,$conn);
 $count = mysql_num_rows($result);
 if ($count > 0) {
 $city = mysql_result($result,0,'city');

 $state = mysql_result($result,0,'state');
 }
}
if (isset($city) && isset($state)) {
 // $return_value = $city . "," . $state;
 $return_value = '<?xml version="1.0" standalone="yes"?><zip><city>'.$city.'</city><state>'.$state.'</state></zip>';
}
else {
 $return_value = "invalid".",".$_GET['param']; // Include Zip for debugging purposes
}
header('Content-Type: text/xml');
echo $return_value; // This will become the response value for the XMLHttpRequest object
?>6

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd">!
<html xmlns="http://www.w3.org/1999/xhtml" >!
<head>!
<title>ZIP Code to City and State using XmlHttpRequest</title>!
<script language="javascript" type="text/javascript">!
var url = "getCityState.php?param="; // The server-side script!
function handleHttpResponse() {!
 if (http.readyState == 4) {!
 if (http.responseText.indexOf('invalid') == -1) {!
 // Use the XML DOM to unpack the city and state data !
 var xmlDocument = http.responseXML; !
 var city = xmlDocument.getElementsByTagName('city').item(0).firstChild.data;!
 var state = xmlDocument.getElementsByTagName('state').item(0).firstChild.data;!
 document.getElementByID'city').value = city;!
 document.getElementById('state').value = state;!
 isWorking = false;!
 }!
 }!
}!
var isWorking = false;!
function updateCityState() {!
 if (!isWorking && http) {!
 var zipValue = document.getElementById("zip").value;!
 http.open("GET", url + escape(zipValue), true);!
 http.onreadystatechange = handleHttpResponse;!
 isWorking = true;!
 http.send(null);!
 }!
}!

function getHTTPObject() {
 var xmlhttp;
 /*@cc_on
 @if (@_jscript_version >= 5)
 try {
 xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");
 } catch (e) {
 try {
 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (E) {
 xmlhttp = false;
 }
 }
 @else
 xmlhttp = false;
 @end @*/
 if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {
 try {
 xmlhttp = new XMLHttpRequest();

 xmlhttp.overrideMimeType("text/xml");
 } catch (e) {
 xmlhttp = false;
 }
 }
 return xmlhttp;
}
var http = getHTTPObject(); // We create the HTTP Object
</script>
</head>
<body>
<form action="post">
 <p>
 ZIP code:
 <input type="text" size="5" name="zip" id="zip" onblur="updateCityState();" />
 </p>
 City:
 <input type="text" name="city" id="city" />
 State:
 <input type="text" size="2" name="state" id="state" />
</form>
</body>
</html>

Table structure for table `zipcodes`

CREATE TABLE `zipcodes` (
 `zipcode` mediumint(9) NOT NULL default '0',
 `city` tinytext NOT NULL,
 `state` char(2) NOT NULL default '',
 `areacode` smallint(6) NOT NULL default '0',
 PRIMARY KEY (`zipcode`),
 UNIQUE KEY `zipcode_2` (`zipcode`),
 KEY `zipcode` (`zipcode`)
) TYPE=MyISAM;

babble of
languages

same logical data;
many different

physical
representations

concurrency (UI events,
sever interaction) buried

deep in APIs

no code
encapsulation, no

interfaces

Code snippet for AJAX UI

Can't we just adapt existing
programming models for distribution?

problem: single address
space programming
concepts cannot be
repurposed*
  latency
  identity: local vs. global
  partial failure
  ubiquitous concurrency

17

*Waldo et al., A Note on Distributed Computing, 1994

while (true) {
 try {
 table->remove(name);
 break;
 }
 catch (NotFound) {
 break;
 }
 catch (NetworkServerFailure) {
 continue;
 }
}

What's wrong with accessing
distributed services via libraries?

18

  problem: neither programmer nor runtime can
readily reason about composition of components

  each library handles common distribution issues
(timeouts, acknowledgments, ...) differently

But beware of baking in too much*
19

  don't make developers pay for functionality they
don't need

  e.g.:
  reliable message delivery in system substrate is both

redundant and expensive...
  ...if sender of message needs acknowledgment that

receiver processed the message correctly anyway

*Saltzer et al., End-to-end Arguments in System Design, 1984

What do we want in a distributed
programming model?

20

  allows sufficient control of low-level behavior to
tune performance and reliability

  doesn't require ubiquitous, expensive functionality
(end-to-end argument)

  doesn't suffer from Waldo et al's pathologies...
  ...but allows reuse of familiar programming

concepts when appropriate

Proposed way forward: Actor model
21

  originally defined by Hewitt et al.* in '73 to model
properties of certain AI planners...

 then developed as a general distributed programming
model by others, particularly Agha

  has gone in and out of fashion
  realized in a wide variety of languages, e.g.:

  Erlang
  Salsa
  Scala
  Axum
  ...

  our implementation is called Thorn

*Hewitt et al., A Universal Modular Actor Formalism for Artifial Intelligence, 1973

Actor basics

  actor is a single-threaded stateful process
  collection of actors form a program/

system
  state of one actor not (directly) accessible

by another: isolation
  every actor has a unique name
  actor names are data
  actors communicate by sending messages

to one another
  messages sent asynchronously: sender does

not block awaiting receipt
  actor names may be sent as messages

  received messages managed by a
(conceptually unbounded) mailbox
  no message ordering guarantee

  in response to a message, an actor may:
  update its state
  create new actors (and remember their

names)
  send messages

22

m2 m1

m3

Actor variants
23

  mechanisms for updating state
  functional (state passed as continuation between messages)
  imperative (state explicitly mutated between messages)

  message delivery may or may not be guaranteed
  explicit "peeking" into mailbox may or may not be

allowed
  explicit or implicit message receipt
  infinite behaviors (e.g., sending unbounded numbers of

messages) may or may not be allowed
  ordered or unordered (implicitly concurrent) actions on

message receipt

Actor and distribution
24

  actor topologies are highly dynamic
  communication topology is dynamic, since names may be sent as

messages
  set of actors can grow dynamically via creation

  asynchronous messaging allows behaviors of sender and
receiver to be decoupled

  actors are oblivious to locality
  but actors running on same node, or same address space

amenable to many optimizations
  concurrency

  data races are impossible
  messsage waiting deadlocks are possible, but arise via poor

protocol design, not unfortunate scheduling decisions

An open source, agile, high performance language for
concurrent/distributed applications and reactive

systems

Key research directions

  code evolution: language, runtime, tool support for transition
from prototype scripts to robust apps

  efficient compilation: for a dynamic language on a JVM
  cloud-level optimizations: high-level optimizations in a

distributed environment
  security: end-to-end security in a distributed setting
  fault-tolerance: provide features that help programmers write

robust code in the presence of hardware/software faults

25

Our actor language: Thorn

Features
  isolated, concurrent,

communicating processes
  lightweight objects
  first-class functions
  explicit state...
  ...but many functional features
  powerful aggregate datatypes
  expressive pattern matching
  dynamic typing
  lightweight module system
  JVM implementation and Java

interoperability
  gradual typing system

(experimental)

Non-features
  changing fields/methods of

objects on the fly

  introspection/reflection

  serialization of mutable objects/
references or unknown classes

  dynamic code loading

26

Features, present and absent

  Open source: http://www.thorn-lang.org
  Interpreter for full language
  JVM compiler for language core

 no sophisticated optimizations
 performance comparable to Python
 currently being re-engineered

  Initial experience
 web apps, concurrent kernels, compiler, ...

  Prototype of (optional) type annotation system

27

Thorn status

28

for (l <- argv()(0).file().contents().split("\n"))
 if (l.contains?(argv()(1))) println(l);

file i/o methods

no explicit decl needed for var

split string into list

iterate over elements of a list

access command-line args

usual library functions on lists

Simple Thorn script

DEMO

29

primitive object: data/
method bundle

user-defined
object

class-
defined

anonymous

class

javaly

function built-in

immutable
primitive

null

int

string

char

component ref

...

immutable
aggregate

list

record

mutable
aggregate

table

map

ordered

30

classes are
generators of
objects, not
types (per se)

Thorn data taxonomy

  no reflection, eval, dynamic code loading
  alternatives for most scenarios

  ubiquitous patterns
  for documentation
  to generate efficient code

  powerful aggregates
  allow semantics-aware optimizations

  easy upgrade path from simple scripts to reusable code
  simple records → encapsulated classes

  modules
  easy to wrap scripts, hide names

  experimental gradual typing system

31

Thorn features for more robust scripting

  adverbial ping-pong
  two players
  play by describing how you hit the ball
  distributed
  each player runs exactly the same code

*minimalist multiplayer online role-playing game

32

A MMORPG*

MMORPG message flow

Player 1 Player 2

happily

eagerly

quickly

sluggishly

snickering

bouncing it off her head

33

DEMO
MMORPG

34

35

Site A

component 1

component 2

component 3

component 4

Site B

component 5

component 6

component 7

component 8

•  sites model physical application distribution
(implemented as one JVM per site)

•  I/O and other resources managed by sites
•  failures managed by sites
•  components can be spawned at remote sites
•  optimizations for intra-site messaging,

concurrency

•  components are Thorn processes
•  components can spawn other

components (at the same site)
•  processes communicate by

message passing
•  intra- and inter-site messaging

works the same way

Thorn refines actors with sites

Anatomy of a component
36

component

module ... module

(optional channel definitions)

body

message
queue
(bag)

message

• statement executed when
component is spawned (usually a
loop)

• component execution ends when
body ends

• defines the component’s code and
state

• loaded and initialized when
component is spawned

MMORPG Code
37

// MMORPG code for both players!

spawn {!

 var done := false;!

 body { !
 [name, otherURI] = argv();!
 otherSite = site(otherURI);!

 fun play(hit) {!
 advly = readln("Hit how?");!
 done := advly == "";!
 if (done) {!
 println("You lose!");!
 otherSite <<< null;!
 }!
 else {!
 otherSite <<< !
 "$name $`hit`s the ball $advly.";!
 }!
 }!

 start =!
 thisSite().str < otherSite.str;!

 if (start) play("serve");!

 do {!
 receive {!
 msg:string => {!
 println(msg);!
 play("return");!
 }!
 | null => {!
 println("You win!");!
 done := true;!
 }!
 }!
 } until (done);!
 }!

};!

spawn an isolated
component (process)

mutable
component-scoped
variable

function
decl

send a message
(any immutable
datum)

convert URI into
component ref

receive messages
matching pattern

pattern variable
(with type
constraint)

interpolate data
into string

constant pattern

immutable
component-scoped
variable

Thorn design philosophy

  steal good ideas from everywhere
  (ok, we invented some too)
  aiming for harmonious merge of features
  strongest influences: Erlang, Python (but there are many others)

  assume concurrency is ubiquitous
  this affects every aspect of the language design

  adopt best ideas from scripting world...
  dynamic typing, powerful aggregates, ...

  ...but seduce programmers to good software engineering
  powerful constructs that provide immediate value
  optional features for robustness
  encourage use of functional features when appropriate
  no reflective or self-modifying constructs

38

  scripts already handle concurrency (but not especially well)

  dynamic typing allows code for distributed components to evolve
independently…code can bend without breaking

  rich collection of built-in datatypes allows components with
minimal advance knowledge of one another’s information
schemas to communicate readily

  powerful aggregate datatypes extremely handy for managing
component state

  associative datatypes allow distinct components to maintain
differing “views” of same logical data

39

Scripting + concurrency: ? …or… !

Cheeper: Twitter in a few lines of code

client 1 server client 2

chirp(”Numbers!")! chirp(
”Spice

s!")!

You ch
irped

"…"!
You chirped "…"!

read()!

[<…>,<
…>]!

40

Cheeper client code
spawn chclient {!

import CHEEPER.*;!

server = site(argv()(0));!

fun help() {!

 println("? = help");!

 println("/ = read");!

 println("+N = vote for");!

 println("-N = vote against");!

 println("other = chirp that");!

 }!

fun read() {!

 c's = server <-> read();!

 for(<chirp, plus, minus> <- c's) {!

 println(!

 "$chirp [+$plus/-$minus]");!

 }!

 }!

body {!

 println("Welcome to Cheeper!");!

 println("? for help");!

 user = readln("Who are you? ");!

 while(true) {!

 s = readln("Chirp: ");!

 match(s)!

 "?" => help()!

 | "/" => read()!

 | "\\+([0-9]+)" / [.int(n)] => !

 println(server <-> vote(n, true))!

 | "\\-([0-9]+)" / [.int(n)] => !

 println(server <-> vote(n, false))!

 | _ => !

 println(server <-> chirp!(s,user))!

 }!

}!

}!

41

Cheeper server code
spawn chserver {!

import CHEEPER.*;!

users = table(user)<var chirps>;!

chirps = table(n)<chirp, var plus, minus>;!

sync chirp!(text, user){!

 n = chirps.num;!

 c = Chirp(text,user,n);!

 chirps(n) :=!

 < chirp=c, !

 plus=0, !

 minus=0 >;!

 if (users.has?(user)) !

 users(user).chirps ::= c!

 else !

 users(user) := < chirps=[c] >;!

 "You chirped '$c'"!

 }!

fun love(<plus, minus>) = plus - minus;!

sync read() = !

 sort[row!

 incrby love(row)!

 decrby chirp.n !

 | for row && <chirp> <- chirps];!

sync vote(n, plus?) {!

 if (plus?) !

 chirps(n).plus += 1!

 else !

 chirps(n).minus += 1;!

 "Thanks"!

 }!

body{!

 println("Cheeper server here!");!

 while(true) {!

 println("Server ready...");!

 serve;!

 }!

}!

}!

42

Augmenting basic actors with channel-
style communication

43

{

}

sync chirp!(text, user) {
 // sender blocks awaiting reply
}

async stopRightNow() {
 // sender expects no reply
}

...

body {
 while (true) serve;
}

 component

synchronous
communication

asynchronous
communication

body runs immediately
after component is
spawned

process one message

Channels are sugar on basic actor primitives

Channel-style communication

  server defines communications:

  RPC

  signal
  client can call these

  timeout option available on <->
  server determines when channels are interrogated

  ... timeout / administrative options.

sync chirp!(text,user) { ... }!

async stopRightNow() from $(root) prio 100 {...}!

response = server <-> chirp!("Hey!","Me")!

server <-- stopRightNow()!

serve // respond to one communication!

44

Further actor extensions for Thorn: work
in progress (I)

45

  local coordination: chords
  pattern on multiple mailbox messages
  inspired by join calculus, polyphonic C#

  local checkpoint/recovery
  sites can recognize failed components
  certain variables designated as stable; written through to

stable storage on every write
 init and reinit code blocks in component

 init establishes component invariants when component
starts

 reinit re-establishes invariants from stable variables
after a crash

Further actor extensions for Thorn: work
in progress (II)

46

  data access
  remote table: hybrid of table and component
  queries shipped to same site of remote table, executed in

own component

  capability-style security
  component as unit of trust, isolation
  piggyback on messaging

Actors vs. design desiderata

Waldo et al.
  latency?

  explicit distinction between cheap
local operations and potentially
expensive remote ones

  identity?
  only notion of global identity is actor

name

  ubiquitous concurrency?
  actors are inherently concurrent

  partial failure?
  distinction between local operations

and remote messages is helpful
  original actor model assumed

guaranteed message delivery; Thorn
does not

  original model made no assumptions
about node failure; Thorn assumes
possible

Saltzer et al
  are core features useful and cost-

effective?
  composition via name passing cheap

and natural for the internet
  asynchronous messaging is cheap and

unavoidable
  ability to dynamically spawn actors is

necessary for topology to evolve, and
can be made cheap

47

Cloud computing: state of the hype*
48

*Gartner Group, 2010

Is there something really new here?

  increasing disconnect between hardware
and software platforms

  virtual hardware, virtual language
runtimes, portable middleware

  ubiquitous network connectivity
  comfort with data/computation

“somewhere else”

  high-quality web UIs
  browser as universal GUI for remote

apps

  cost of wide-area networking has fallen
more slowly than other IT hardware costs
  economic necessity mandates putting

the data near the application [Gray,
2003]

  managed collection of (relatively) uniform
distributed resources

  the illusion of infinite computing resources
available on demand

  scaling down as important as scaling
up

Environmental factors New functionality

49

three sites, one "virtual"

50

 HTTP
gateway

memcache

 chirp
indexer

page
handler

page
handler

page
handler

page
handler

component
instantiated
dynamically per
HTTP request

 twitter app
API

Biggish Thorn app: WebCheeper

page
handler

page
handler

page
handler

page
handler

page
handler

page
handler

page
handler

page
handler

page
handler

page
handler

51

 HTTP
gateway

 twitter app
API

page
handler

 HTTP
gateway

 HTTP
gateway

page
handler

 AppScale
request

dispatcher

memcache here, thorn
components are
replicated and
deployed on
additional sites for
increased scalability chirp

indexer

inter-component and inter-
site optimizations may be
more consequential than
than intra-component
optimizations

WebCheeper on AppScale cloud
51

Replication: key to scalability and
fault-tolerance

52

  replicated compute servers
  replicated databases
  caching throughout the internet
  splitting disjoint data, disjoint services over multiple

nodes

  simple data splitting
  split components whose communications access disjoint data

  replicate stateless components
  as in WebCheeper example
  can arbitrarily replication components where state not

accessed across multiple communications
  speculative replication of stateful components

  when downstream peers are idempotent w.r.t. repeated
requests

  sharding
  split components with table state into multiple components,

multiple tables with disjoint key spaces
  possible when component accesses only a single table

record

Opportunity: recomposing actors for
cloud optimization I

53

  batch→stream
  replace pipeline of bulk data transformations with

parallel per-item transformations
  generalized map-reduce

  identify parallelizable queries, break into pipelines
  caching

  introduce intermediate components that store the results
of computations

 weak consistency replicated datastores (à la
Amazon Dynamo, Google BigTable)
 are they an instance of a more general paradigm?

Opportunity: recomposing actors for
cloud optimization II

54

  in addition to basic actor operations, a transactor t can:
  stabilize: enter a mode where t does not change its state (a non-

stable transactor is volatile)

  checkpoint: create a persistent copy of current state (restored after
restart from failure)
  checkpoint only allowed if t and transactors on which t depends

are stable
  t becomes volatile after checkpoint

  rollback: revert to t's last checkpointed state

  semantics maintains dependence information about peer
transactors

Transactor model: global checkpointing

*Field, Varela 2005

55

Summary
56

  actors are good match for Waldo and Saltzer's
desiderata

  thorn: pragmatic extension/interpretation of actor
model
  no assumption of message delivery
  site/component distinction
  explicitly imperative local computation
  channels as well as simple messages
  unbounded behaviors

  for the future: need more compositional tools
  that enable analysis of latency, failure modes
  enable CAP tradeoffs
  optimization through replication

Questions?

Thanks! 57

