THE VERSATILE ACTOR:
TOWARD COMPOSITIONAL
PROGRAMMING OF
DISTRIBUTED APPLICATIONS

PsiEta 2010

Collaborators

Actors
Carlos Varela

Thorn
Bard Bloom
Brian Burg
Jakob Dam
Julian Dolby
Nate Nystrom
Johan Ostlund
Gregor Richards
Ignacio Solla Paula
Rok Strnisa
Emina Torlak
Tobias Wrigstad
Jan Vitek

What do these apps have in common?

English [char

Compare Services Contact Sales | Business Partners

LotusLive Brings Power to Try LotusLive for 30 days

Your Business

Get started now with a no-cost, 30-day
trial. Choose the LotusLive collaboration
service that is right for you.

Announcing the new LotusLive Business Partner
Program, designed to help you succeed in the

marketplace.
J Learn More See itin Action
LotusLive Stay Connected Save Time & Cut Travel Build Your Business Partner LotusLive
\J Overview with E-mail Meet Online Business Network Program Labs
i) LotusLive Services
News: Panasonic chooses LotusLive. Hear Why
(@) LotusLive Engage

LotusLive in Action LotusLive Labs Live era
LotusLive helps manage a life-saving mission Check it out! Try pre-alpha % input
in Africa. technologies in LotusLive Labs.
Watch How Learn More 7 HSV
4 . B conversion
Background
° Cloud Advantage Podcasts) Join a Live Demo 4 L companson
Backgrdund
uodate Connected
T carmponents
and filtering
Vv Blu-ray Video
Segmentation
Pixel
occlusion
frequency
! B Compositing
Buffer in / out Display

Composite Display

Common threads

collection of distributed components...
...loosely coupled by messages, persistent data

irregular concurrency, driven by real-world data
(“reactive”)

high data volumes

fault-tolerance important

Why are systems distributed?

access fo other administrative domains with proprietary
data and data processing capabilities

sharing data among multiple users or administrative
domains

scalability via networked compute and storage
resources

isolation for fault containment

redundancy (data or compute) for handling network
partition or node failures

reduced latency by bringing computation closer to
human users or physical devices that access it

Distributed apps are now the norm

How should our programming
models adapt to this new reality?

Why is this interesting /challenging?

Distributed systems...back in the day

clear distinction between "clients" and "servers"

servers implemented standard services

database queries
NFS file access
FTP

simple HTTP requests

most sophisticated code on "server" side
e.g., for clustering
inter-node code written mostly by systems gurus

application-specific APls to access standard services

Contrast with...
=

Twitter and similar "web2.0" applications

page memcache
~hendlar partition - mobile
page - - -, gateway

handler N
——— memcache

gateway page partition \

: handler mobile

page memcache gateway

handler n partition

user acct DB

search advertising
indexer feed

Distributed systems today

A distributed system is one in
which the failure of a computer
you didn't even know existed
can render your own computer
unusable

complex network of interconnected services
variety of availability /reliability requirements

distinction between "client" and "server" increasingly
unclear

many administrative domains...
...not all of them are your friends

Failures have consequences

eCommerce ca. 2002:

Wanted: 2 different pairs of kid’s sneakers from namelesswebsite.com

Error 500
An error has occured while processing request:https://www.namelesswebsite.com/ErrorReporter
Message: Server caught unhandled exception from servlet [JSP 1.1 Processor]: null

Target Servlet: JSP 1.1 Processor
StackTrace: Root Error-1:
java.lang.NullPointerException
at Proxy._eProxyGetAccount_jsp_0._jspService(_eProxyGetAccount_jsp_0.java:78)
at org.apache.jasper.runtime.HttpJspBase.service(HttpJspBase.java(Compiled Code))
at javax.servlet.http.HttpServlet.service(HttpServlet.java(Compiled Code))
at org.apache.jasper.runtime.JspServlet$JspServietWrapper.service(JspServlet.java(Compiled Code))
at org.apache.jasper.runtime.JspServlet.servicelspFile(JspServlet.java(Compiled Code))
at org.apache.jasper.runtime.JspServlet.service(JspServlet.java(Compiled Code))
at javax.servlet.http.HttpServlet.service(HttpServlet.java(Compiled Code))
at com.ibm.servlet.engine.webapp.StrictServletinstance.doService(ServletManager.java(Compiled Code))
at com.ibm.servlet.engine.webapp.StrictLifecycleServlet._service(StrictLifecycleServlet.java(Compiled Code))
at com. |bm servlef engme webopp IdIeServIe’rSfo’re serV|ce(Sfrlc’rLlfecycleServIe’r java(Compiled Code))

R Y Y I Y S Y [P Y I N N S Y

Thank You For Your Orderl!
Please Visit Us Again.

Failures have consequences

Results

3 pairs of shoes...

...all the same

credit card charges for 4 pairs ﬂ

Failures are e'er with us
m

Twitter Backup Failure Sent the Site Crashing

Posted on Jan 20th, 2010 by Zee Recommend |3 Tweet |

Twitter has released an official statement regarding the outage

that saw the site come to a crashing halt.

The statement:

“We are recovering from this incident. A sudden failure coupled
with problems in switching to a backup system produced a high
number of errors for around 90 minutes. This made the site
largely inaccessible. No data was lost or compromised during
this outage.”

The outage was the longest downtime for some time for the

Silicon Valley company, lasting almost an hour. The downtime
also arrived as news of a second earthquake in Haiti broke,
leading many, including ourselves, to believe the two were

related.

There is also talk that Bill Gates arrival on Twitter may have caused the outage, although

considering the news of his appearance broke yesterday, it's highly unlikely.

Composing functionality in the presence
of failures can be problematic

11 consider:
composing a fast, high availability component...

...with a slow, fault-tolerant replicated server

Alas, you can't have it all

7 In fact, you can only
have two out of the N, A
following three™

consistency

availability A4

partition-tolerance U
V]

*Eric Brewer, Toward Robust Distributed Systems, 2000
(example due to Julian Browne)

Distributed programming can get ugly

A simple AJAX web app HD| D| -~ 6

......... >
Zip Database
T TTTITTIITR
City State Zip Lookup
ZIP code l--==:::2j::::- Servlet Merchant Credit
Submit g Server
Credit Card Number H D L] : 7
sbmit 0 T . 1 €
Form + JCIVCISCr'ipT COde W
Form Submission
Servlet

User Credit
Servers

Code snippet for AJAX Ul

. 1.0 Strict//EN" "http://www.w3.org/TR/

<head>

<title>ZIP Code to City and Statc

<script language="javascript" type="tex.

var url "getCityState.php?param="; // The servc

function handleHttpResponse() {

if (http.readyState == 4) {
if (http.responseText.indexOf('invalid') == -1) {

// Use the XML DOM to unpack the city and state data
var xmlDocument = http.responseXML; #
var city = xmlDocument.getElementsByTagName('city').item(# Table structure for table
var state = xmlDocument.getElementsByTagName('state').ite #
document.getElementByID'city').value = city;
document.getElementById('state').value = state;
isWorking = false;

nide script

> Name
L usernam

CREATE TABLE zipcodes' (

‘city’ tinytext NOT NULL,
} ‘state’
} ‘areacode”
var isWorking = false; PRIMARY KEY (' zipcode’),
function updateCityState() { UNIQUE KEY ‘zipcode 2°
if (!isWorking && http) { KEY ‘zipcode®' (' zipcode)
var zipValue = document.getElementById("zip").value;) TYPE=MyISAM;
http.open("GET", url + escape(zipValue), true);
http.onreadystatechange = handleHttpResponss
isWorking = true;
http.send(null);

>><zip><c

_value =

"invalid".",".$_GET['param']; // Include Zip £

ontent-Type: text/xml');
urn_value; // This will become the response value for t

‘zipcode' mediumint(9) NOT NULL default '0',

char (2) NOT NULL default '',
smallint (6) NOT NULL default '0',

function getHTTPObject() {
var xmlhttp;
/*@cc_on
@if (@_jscript version >= 5)
try {
xmlhttp = new ActiveXOb#
} catch (e) {
try {
xmlhttp = new ActiveXObject ("Microsoft.XMLHTTP") ;
} catch (E) {
1lse;

‘zipcodes®

of XMLHttpRequest != 'undefined') ({

ILHttpRequest () ;
rerrideMimeType (" text/xm

("zipcode’) ,

}
var http = getHTTPObject() ;
</script>
</head>
<body>
<form action="post">
<p>
ZIP code:
<input type="text"
</p>
City:
<input type="text"
State:
<input type="text"
</form>
</body>
</html>

// We +the HTTP Object

name="cit;

size="2" 1

Can't we just adapt existing

- programming models for distribution?

problem: single address

space programming while (true) {
try {
concep’rs cannot be table->remove (name) ;
repurposed™ | DEeak:
catch (NotFound) {
0 latency break:
o o }
[|den’r|’ry: |OCCI| Vs. QIObGI catch (NetworkServerFailure) {
. . continue;
0 partial failure }

}

0 ubiquitous concurrency

*Waldo et al., A Note on Distributed Computing, 1994

What's wrong with accessing
distributed services via libraries?

problem: neither programmer nor runtime can
readily reason about composition of components

each library handles common distribution issues
(timeouts, acknowledgments, ...) differently

But beware of baking in too much*®

don't make developers pay for functionality they
don't need

e.g.:
reliable message delivery in system substrate is both
redundant and expensive...

...if sender of message needs acknowledgment that
receiver processed the message correctly anyway

*Saltzer et al., End-to-end Arguments in System Design, 1984

What do we want in a distributed
programming model?

allows sufficient control of low-level behavior to
tune performance and reliability

doesn't require ubiquitous, expensive functionality
(end-to-end argument)

doesn't suffer from Waldo et al's pathologies...

...but allows reuse of familiar programming
concepts when appropriate

Proposed way forward: Actor model

originally defined by Hewitt et al.* in '73 to model
properties of certain Al planners...

....then developed as a general distributed programming
model by others, particularly Agha

has gone in and out of fashion

realized in a wide variety of languages, e.g.:
Erlang
Salsa
Scala
Axum

our implementation is called Thorn

*Hewitt et al., A Universal Modular Actor Formalism for Artifial Intelligence, 1973

Actor basics

T actor is a single-threaded stateful process

71 collection of actors form a program/
system

m

state of one actor not (directly) accessible
by another: isolation

every actor has a unique name

actor names are data

actors communicate by sending messages
to one another

messages sent asynchronously: sender does
not block awaiting receipt

actor names may be sent as messages
O

received messages managed by a
(conceptually unbounded) mailbox

no message ordering guarantee
O

in response to a message, an actor may:
update its state

create new actors (and remember their
names)

send messages

Actor variants

mechanisms for updating state
functional (state passed as continuation between messages)

imperative (state explicitly mutated between messages)
message delivery may or may not be guaranteed

explicit "peeking" into mailbox may or may not be
allowed

explicit or implicit message receipt
infinite behaviors (e.g., sending unbounded numbers of
messages) may or may not be allowed

ordered or unordered (implicitly concurrent) actions on
message receipt

Actor and distribution

actor topologies are highly dynamic

communication topology is dynamic, since names may be sent as
messages

set of actors can grow dynamically via creation
asynchronous messaging allows behaviors of sender and
receiver to be decoupled
actors are oblivious to locality

but actors running on same node, or same address space
amenable to many optimizations

concurrency
data races are impossible

messsage waiting deadlocks are possible, but arise via poor
protocol design, not unfortunate scheduling decisions

Our actor language: Thorn

An open source, agile, high performance language for
concurrent/distributed applications and reactive
systems

Key research directions

code evolution: language, runtime, tool support for transition
from prototype scripts to robust apps

efficient compilation: for a dynamic language on a JYM

cloud-level optimizations: high-level optimizations in a
distributed environment

security: end-to-end security in a distributed setting

fault-tolerance: provide features that help programmers write
robust code in the presence of hardware /software faults

Features, present and absent

Features Non-features

isolated, concurrent,

communicating processes changing fields/methods of

lightweight objects objects on the fly

first-class functions introspection /reflection

explicit state... serialization of mutable objects/
...but many functional features references or unknown classes
powerful aggregate datatypes dynamic code loading

expressive pattern matching
dynamic typing
lightweight module system

JVM implementation and Java
interoperability

gradual typing system
(experimental)

Thorn status

Open source: http:/ /www.thorn-lang.org
Interpreter for full language
JVM compiler for language core

no sophisticated optimizations

performance comparable to Python

currently being re-engineered
Initial experience

web apps, concurrent kernels, compiler, ...

Prototype of (optional) type annotation system

Simple Thorn script

N

for (1 <- argv () (0).file() .contents () .split ("\n"))
if (l.contains?(argv() (1))) println(l);

T

29

Thorn data taxonomy

primitive object: data/
method bundle

user-defined
object

class-

tm

immutable
primitive

FEEED

|

immutable
aggregate

mutable
aggregate

i
i
i

Thorn features for more robust scripting

no reflection, eval, dynamic code loading
alternatives for most scenarios
ubiquitous patterns
for documentation
to generate efficient code
powerful aggregates
allow semantics-aware optimizations
easy upgrade path from simple scripts to reusable code
simple records — encapsulated classes
modules
easy to wrap scripts, hide names

experimental gradual typing system

A MMORPG*

adverbial ping-pong

two players

play by describing how you hit the ball
distributed

each player runs exactly the same code

“minimalist multiplayer online role-playing game

MMORPG message flow

oo

MMORPG

34

Thorn refines actors with sites

: * components are Thorn processes
Site A P P
* components can spawn other
component 1 components (at the same site)
~~~~~~~~~~ * processes communicate b
component 2 =~ P Y
message passing

component 3 . . . .
* intra- and inter-site messaging

works the same way

Site B
. . . e e el component 5
sites model physical application distribution
(implemented as one JVM per site) component 6

|/O and other resources managed by sites component 7

failures managed by sites
) component 8
components can be spawned at remote sites

optimizations for intra-site messaging,

concurrency



Anatomy of a component
N

(optional channel definitions)




// MMORPG code for both player

spawn { start =

thisSite().str < otherSite.str;
var done := false;
if (start) play("serve");
body {
[name, otherURI] = argv(); do {

otherSite = site(ctherURI); receive {

msg:string => {
println(msg);
play("return") -

fun play(hit) {

advly = readln("Hit how?");

done := advly == ""; }

if (done) { | null => {
println("You lose!");
otherSite <<< null;

} }

else { }
otherSite <<< } until (done);

"$Sname $ hit s the ball Sadvly.";

println("Ycu
done := true,




Thorn design philosophy

steal good ideas from everywhere
(ok, we invented some too)
aiming for harmonious merge of features
strongest influences: Erlang, Python (but there are many others)

assume concurrency is ubiquitous
this affects every aspect of the language design

adopt best ideas from scripting world...
dynamic typing, powerful aggregates, ...

...but seduce programmers to good software engineering
powerful constructs that provide immediate value
optional features for robustness
encourage use of functional features when appropriate
no reflective or self-modifying constructs



Scripting + concurrency: ¢ ...or... |

scripts already handle concurrency (but not especially well)

dynamic typing allows code for distributed components to evolve
independently...code can bend without breaking

rich collection of built-in datatypes allows components with

minimal advance knowledge of one another’s information
schemas to communicate readily

powerful aggregate datatypes extremely handy for managing
component state

associative datatypes allow distinct components to maintain
differing “views” of same logical data



Cheeper: Twitter in a few lines of code
I

client 1 server client 2

C

hirp ” 1 cesS ! ! )
( NulnberS! n) Chirp ( " Spl
_ q "
chlrpe

m
-~
N




Cheeper client code

spawn chclient { body {
import CHEEPER.*; println("Welcome to Cheeper!");

server = site(argv()(0)); println("? for help");

fun help() { user = readln("Who are you? ");
println("? = help"); while(true) {

println("/ = read"); = readln("Chirp: ");

println("+N = vote for"); match(s)

println("-N = vote against"); "?2" => help()

println("other = chirp that"); "/" => read()

} "\\+([0-9]+)" / [.int(n)] =>

println( server <-> vote(n, true))

fun read() { "\\=([0-9]+)" / [.int(n)] =>

c's = server <-> read(); println(server <-> vote(n, false))

for( <chirp, plus, minus> <- c's) { =>

println( println(server <-> chirp!(s,user))

"$chirp [+$plus/-$minus]");




Cheeper server code

spawn chserver {

42import CHEEPER. *;

users = table(user)<var chirps>;

chirps =

sync chirp! (text, user){
n = chirps.num;
c Chirp(text,user,n);

chirps(n)

< chirp=c,
plus=0,
minus=0 >;
if (users.has?(user))

users(user) .chirps
else

se= C

users(user) := < chirps=[c] >;

"You chirped 'S$c'"

}

fun love(<plus, minus>) =

plus - minus;

table(n)<chirp, var plus, minus>;

sync read() =

sort[row

incrby love(row)

decrby chirp.n

| for row && <chirp> <- chirps];

sync vote(n, plus?) {
if (plus?)

chirps(n).plus += 1
else

chirps(n).minus += 1;
"Thanks"

}

body {

println("Cheeper server here!");
while(true) {

println("Server ready...");
serve;




Augmenting basic actors with channel-

style communication
| | component |

sync chirp! (text, user) {
// sender blocks awaiting reply
}

async stopRightNow () -
// sender expects no reply

}

body {
while (true) serve;

}

Channels are sugar on basic actor primitives



Channel-style communication
I

o1 server defines communications:
sync chirp! (text,user) { ... }
o RPC
o signal
01 client can call these

response = server <-> chirp!("Hey!", "Me")

server <-- stopRightNow/()

o timeout option available on <->

11 server determines when channels are interrogated

serve // respond to one communication

0 ... timeout / administrative options.



Further actor extensions for Thorn: work
in progress (l)

local coordination: chords
pattern on multiple mailbox messages
inspired by join calculus, polyphonic C#
local checkpoint/recovery
sites can recognize failed components

certain variables designated as stable; written through to
stable storage on every write

init and reinit code blocks in component

init establishes component invariants when component
starts

reinit re-establishes invariants from stable variables
after a crash



Further actor extensions for Thorn: work
in progress (ll)

data access
remote table: hybrid of table and component

queries shipped to same site of remote table, executed in
own component

capability-style security
component as unit of trust, isolation

piggyback on messaging



Actors vs. design desiderata

Waldo et al. Saltzer et al
latency? are core features useful and cost-
explicit distinction between cheap effective?
local operations and potentially composition via name passing cheap
expensive remote ones and natural for the internet
identity? asynchronous messaging is cheap and
only notion of global identity is actor unavoidable
name ability to dynamically spawn actors is
. . necessary for topology to evolve, and
2 ’
ubiquitous concurrency? can be made cheap

actors are inherently concurrent

partial failure?

distinction between local operations
and remote messages is helpful

original actor model assumed
guaranteed message delivery; Thorn
does not

original model made no assumptions
about node failure; Thorn assumes
possible



Cloud computing: state of the hype™
I

expectations
Wireless Power
Media Tablet
Augmented Reality
Private Cloud Computing
| Internet TV
Speech-to-Speech Transiation
30 Printing
Social ®
Mobile Robots
Pen-Centric Tablet PCs A
Video Search Q@ Microblogging
Electronic Paper B
Aulmrmom Vehicles v W Speech Recognition
Extreme Transaction Processing M E-Book Readers Location-Aware Applications
Tangible User interfaces L Video Telepresence Y Predictive Analytics
a Interactive TV
Terahertz Waves - Internet Micropayment Systems
Computer-Brain Interface Over u o O Biometric Authentication Methods
Context Delivery Architecture Virtual m"::: Mobile Application Stores
Human Augmentation Idea Management
Consumer-Generated Media
Public Virtual Workis
As of August 2010
Technology :\.ﬂ.:t:c: Trough of Slope of Enlightenment Plateau of
Trigger Expectations Disillusionment Productivity
time >
Years to mainstream adoption: obsolete
Olessthan2years O 2toSyears @ 5to10years A morethan 10 years & before plateau

*Gartner Group, 2010



Is there something really new here?

increasing disconnect between hardware
and software platforms

virtual hardware, virtual language
runtimes, portable middleware

ubiquitous network connectivity

comfort with data/computation
“somewhere else”

high-quality web Uls
browser as universal GUI for remote
apps

cost of wide-area networking has fallen
more slowly than other IT hardware costs

economic necessity mandates putting

the data near the application [Gray,
2003]

managed collection of (relatively) uniform
distributed resources

the illusion of infinite computing resources
available on demand

scaling down as important as scaling
up



twitter app
API

page

4 handler
Y
Vg
p, page
VPl handler
HTTP /o
- memcache
~
gateway N\ page
N handler
N
N
000 Web Cheeper | Sign In
< |» ||+ @ nup:/localhost:8080/ : ¢ | (Q Google
O & Apple Yahoo! Google Maps YouTube Wikipedia News (222)v Popularv //

Web Cheeper

POWERED BY THORN

Home Sign Up About
chirp
sign In indexer
Usemname
john
Password

three sites, one "virtual"




WebCheeper on AppScale cloud

AppScale
request
dispatcher

HTTP
gateway

=

-

=
<

T o
~
~

page
handler

HTTP
gateway

page
handler

HTTP
gateway

page
handler

twitter app
API

here, thorn
components are
replicated and
deployed on
additional sites for
increased scalability




Replication: key to scalability and
fault-tolerance

replicated compute servers

replicated databases

caching throughout the internet
splitting disjoint data, disjoint services over multiple

nodes



Opportunity: recomposing actors for
cloud optimization |

simple data splitting

split components whose communications access disjoint data
replicate stateless components

as in WebCheeper example

can arbitrarily replication components where state not
accessed across multiple communications

speculative replication of stateful components

when downstream peers are idempotent w.r.t. repeated
requests

sharding

split components with table state into multiple components,
multiple tables with disjoint key spaces

possible when component accesses only a single table
record



Opportunity: recomposing actors for
cloud optimization |l

batch—>stream

replace pipeline of bulk data transformations with
parallel per-item transformations

generalized map-reduce
identify parallelizable queries, break into pipelines

caching

infroduce intermediate components that store the results
of computations

weak consistency replicated datastores (a la
Amazon Dynamo, Google BigTable)

are they an instance of a more general paradigm?



Transactor model: global checkpointing

in addition to basic actor operations, a transactor t can:

stabilize: enter a mode where t does not change its state (a non-
stable transactor is volatile)

checkpoint: create a persistent copy of current state (restored after
restart from failure)

checkpoint only allowed if t and transactors on which + depends
are stable

t becomes volatile after checkpoint

rollback: revert to t's last checkpointed state

semantics maintains dependence information about peer
fransactors

*Field, Varela 2005



Summary

actors are good match for Waldo and Saltzer's
desiderata

thorn: pragmatic extension /interpretation of actor
model

no assumption of message delivery

site /component distinction

explicitly imperative local computation

channels as well as simple messages

unbounded behaviors

for the future: need more compositional tools
that enable analysis of latency, failure modes

enable CAP tradeoffs
optimization through replication



Questions?



