Efficient Data Handling in Large-Scale
* Sequence Database Searches
|

H. Lint, X. Ma', W. Feng®,
A. Geist?, and N. Samatova*

NV *Virginia Tech FORNL

) Outline

= Sequence database search
Parallel BLAST background
mpiBLAST & pioBLAST
New release: mpiBLAST-pio

GreenGene: search NT against NT practice
(5C|05, StorCloud Demo)

Sequence Database Search is Critical
, for Biomedical Science

= Routinely used in biomedical research

= Search similarities between query sequences and sequence
database

= Predict structures and functions of new sequences
= Analogous to web search engines (e.g. Google)

Web Search Engine Sequence DB Search
Input Keyword(s) Query sequence(s)
Search space Internet Known sequence database
Output Related web pages DB sequences similar to
the query
Sorted by Closeness & rank Score (Similarity)

, Challenge for Sequence DB Search

Sequence DB Search is Hampered by the Growing Gap
between Sequence Growth and Processor Memory

Growth of Memory vs. Genbank
6000

J Comlpressed éenbank s:ze — |

5000 Memory size -->--

4000

Sequence databases are

3000
growing exponentially in size

Size (MB)

2000

1000

o X

0 L X ») L ey ¢ --f
1986 1988 1990 1992 1994 1996 1998 2000 2002
Year

Because of this gap: there is a lot of repeated 1/0 introduced by loading
sequence data back and forth from the file system to the memory. This
adversely affects the performance.

BLAST: At the Core of Sequence DB

‘ Search

= Widely used search tool:
= Approximately 75%-90% of all compute cycles in life
sciences are devoted to BLAST searches
= But, it is:
= Computationally demanding, O(n?)
= Requires huge database to be stored in memory
= Generates gigabytes of output file for large database
searches
= Parallel BLAST as a means to address
computational challenge

BLAST Parallelization:
‘ Query Segmentation

Queries

>Perilla Frutescens CDS 0001 W k N d
TTGGTATCCACGGAAGAGAGAGAAAATGTTGGGAATTTTCAGCGGAC or‘ er‘ O es
GTATAGTATCATTGCCGGAAGAGCTGGTGGCTGCCGGGAACC

>Perilla Frutescens CDS 0002

GGAGGGTGGCTGGTGGGTATTGGCGGCCCGACCGATCTGCCCCGAC
CGACGGCTCCTGCCACCCGAACATGTGATAGAAAGGAQQQQQQQQ

>Perilla Frutescens CDS 0003

TTTTTTTCTTGATGCTGAAATCTATCCAAACATCACCAGTCCTCACGAG
TCCTTGACCAAATTCTTGCTTTCTGGCACAATCTGAAGCCCAAAGGC

Database

>gi|3123744|dbj|AB013447.1|AB013447
TTGGTATCCACGGAAGAGAGAGAAAATGTTGGGAATTTTCAGCGGAC
GTATAGTATCATTGCCGGAAGAGCTGGTGGCTGCCGGGAACC
>gi|221778|dbj|D00026.1|HS2HSV2P4
GGAGGGTGGCTGGTGGGTATTGGCGGCCCGACCGATCTGCCCCGAC
CGACGGCTCCTGCCACCCGAACATG

>gi|7328961|dbj|AB032155.1|AB032154S2
TTTTTTTCTTGATGCTGAAATCTATCCAAACATCACCAGTCCTCACGAG
TCCTTGACCAAATTCTTGCTTTCTGGCACAATCTGAAGCCCAAAGGC N, Feng at. el. “mpiBLAST on the GreenGene Distributed 6

Supercomputer”, SC|05

‘ Pros and Cons of Query Segmentation

= Advantages
= Low parallelization overhead
= Linear speedup when database fits into single
processor memory
= Disadvantages
= Suffers repeated I/0 when database cannot fit into
main memory

= Resource under-utilization / load imbalance when
#queries smaller than or comparable to #processors

BLAST Parallelization:
‘ Database Segmentation

Queries
>Perilla Frutescens CDS 0001 h Worker Nodes

TTGGTATCCACGGAAGAGAGAGAAAATGTTGGGAATTTTCAGCGGAC
GTATAGTATCATTGCCGGAAGAGCTGGTGGCTGCCGGGAACC

>Perilla Frutescens CDS 0002

GGAGGGTGGCTGGTGGGTATTGGCGGCCCGACCGATCTGCCCCGAC
CGACGGCTCCTGCCACCCGAACATGTGATAGAAAGGAQQQQQQQQ

>Perilla Frutescens CDS 0003

TTTTTTTCTTGATGCTGAAATCTATCCAAACATCACCAGTCCTCACGAG
TCCTTGACCAAATTCTTGCTTTCTGGCACAATCTGAAGCCCAAAGGC

Database

>gi|3123744|dbj|AB013447.1|AB013447

TTGGTATCCACGGAAGAGAGAGAAAATGTTGGGAATTTTCAGCGGAC
GTATAGTATCATTGCCGGAAGAGCTGGTGGCTGCCGGGAACC

>gi|221778|dbj|D00026.1|HS2HSV2P4

GGAGGGTGGCTGGTGGGTATTGGCGGCCCGACCGATCTGCCCCGAC
CGACGGCTCCTGCCACCCGAACATG

>gi|7328961|dbj|AB032155.1|AB032154S2

TTTTTTTCTTGATGCTGAAATCTATCCAAACATCACCAGTCCTCACGAG
TCCTTGACC TTCTTGCTTTCTGGCACAATCTGAAGCCC Gee W. Feng at. el. “mpiBLAST on the GreenGene Distributed 8

Supercomputer”, SC|05

Pros and Cons of Database
l Segmentation

= Advantages
= Fitting large database into aggregate memory
= Able to utilize large machines regardless of
#queries
= Disadvantages

= Higher parallel search overhead, local results need
to be merged globally

= Challenge
= Reduce result merging & processing overhead

mpiBLAST: A Specific Implementation
l of Database Segmentation

= Open-source parallel BLAST developed at
LANL:

= http://mpiblast.lanl.gov or http://www.mpiblast.org
Increasingly popular: more than 10,000
downloads in less than 2 years

Integrated with NCBI BLAST

Based on database segmentation

Performance

= Achieves super linear speedup when using small #
processors

= Problem: overhead in data handling limits scalability

10

P mpiBLAST System Design

= Master-slave model: one master, p-1 workers

= Searching done in workers
= Search all queries against a subset of DB frags
= Generate partial results - meta data of alignments
(ASN.1 format, include seq id, scores, etc.)
= Output processing done in master
= Merge partial results from all workers
= Fetch correspondent result sequence data
= Compute and output alignments

11

3 mpiBLAST 1.2 Input

= Databases partitioned statically before search

= Inflexible

= execution time sensitive o # fragments

= re-partitioning required to use different # procs
= Management overhead

= generating large number of small files, hard to manage, migrate and

share

Execution Time Vs. # Fragment

4500

@
s £
Fragments sensitivity test i= 4000
9 Y T 3500 _—
. . S 3000 —
- Search 150k queries against nr 3 500
database & 2000 A
. = 1500 &
- Using 32 processors 3 1000
= 500
o

o 50 100 150 200
Number of Fragments

12

" mpiBLAST 1.2 Output

Master must cache all results

Master

result 1 Seq data

result 1
result 2
result 3

-Seq data sent over networ

) =]

result 3 <—— DB Frag

/
Alignmentl |Alignment2

——

Serialized by the master

" mpiBLAST 1.2 Scalability

= Consequence of inefficient data handling:
rapidly growing non-search overhead as
= No. of procs increases
= Output data size increases

Execution Time vs. # Procs

= Other time
O Search time|

-Search 150k queries against nr

3000

- Vary number of processors

2000

. |

Number of Processors

Time (Seconds)

- Database evenly partitioned
according to # processors

14

) pioBLAST

= Research prototype of efficient parallel BLAST
developed at ORNL & NCSU

= Built on top of mpiBLAST1.2

= Apply parallel/collective I/0 techniques
= Enable dynamic partitioning
= Parallel database input and result output
= Highly efficient result processing
= Workers compute alignments in parallel
= Workers buffer and write local output in parallel

= Enhanced worker-master communication for reducing
data transfer volume

15

l Dynamic Partitioning of pioBLAST

= No pre-partitioning
= One single database image to search against
= Virtual fragments generated dynamically at run time
= Workers read inputs in parallel with MPI-IO interface
= Fragment size configurable at run time
= Easily supports dynamic load balancing

Worker1 Worker2 Worker3 Worker n
Frag1 Frag2 Frag3
Frag1 Frag2 Frag3

Global Sequence Data

JJ Output Processing of pioBLAST

Reduce
communication
Master
SW - LUt offsets
\4
Worker1 Worker2 Worker3

result 1.3 re

result 1.1 result 2.1 result 3.1
result 1.2<: DB Frag result 2.2\,’1: DB Frag reguit2-2
Processing and
result 2.3

caching results in

parallel

1.1]1.2]1.3 2.1]2.2]2.3 I%ﬁﬂ

Collective writing: 1/0
in parallel

2.

SN

1.1[3.1][3.2[1.2]2.2]2.3] -

Global output file

mpiBLAST 1.2 vs. pioBLAST:
l Node Scalability

= Platform: SGT Altix at ORNL
= 256 processors (1.56Hz Itanium2), 8GB memory/proc, XFS

= Database: nr (16B)
= Node scalability

= mpiBLAST: non-search overhead increases fast
= PpioBLAST: non-search time remains low

Search 150k NR queries on different #procs

4000 - [Search time = Other time
3500 7.

Execution time (s)
_aNn
aouno
cooo
cooocoo

Program-No. of processes

18

mpiBLAST 1.2 vs. pioBLAST:
) Output Scalability

= Same platform and database
= Varied query size to generate different output size

Search different #query seqs on 64 procs

4000
3500 -
3000
2500
2000

1500
1000
500 IIII
o . ‘ : —_— : =

. R &\é‘ ";\é
’ & & A »
& ¢ & &° & 9§ &
Program-Output Size

o Search m Other

Execution Time (s)

19

) mpiBLAST Evolves: v1.4

= Exact e-value statistics

= Improved result processing

= Reduce worker-master communication by packing
partial biosequences along with ASN.1 results

= Alleviate master bottleneck with query pipe-lining
= Not ready for the large DB search
= Output processing still serialized
= Partial results and result sequences data for a single
query could be huge (gigabytes)
= Performance
= Efficient in handling queries with small output

= Hang or perform slow for queries with large output
20

10

l mpiBLAST -pio

Highly efficient, open source parallel BLAST (available
at http://mpiblast.lanl.gov/)

Joint effort between mpiBLAST and pioBLAST
research teams

Current release based on mpiBLAST 1.4

Exact e-value statistics
Keep scheduling (query pipelining) and data distribution

Efficient parallel output processing from pioBLAST

Worker compute and buffer local output in parallel
Non-collective parallel write to better support query pipelining
Modifications on NCBI BLAST less than 30 lines

Support all but anchor output formats

21

mpiBLAST-pio Meet The Grand

l Challenge: searching NT vs. NT

= SC|05 StorCloud demo (Nov. 13 - Nov. 17)

Team
= Institutions: LANL, NCSU, U. Utah, and Virginia Tech
= Vendors: Intel, Panta Systems, and Foundry Networks

Sequencing NT against itself (16GB raw size)

Why?
= Provide insightful knowledge to catalog NT database
= Demonstrate scalability of mpiBLAST(pio) to larger problem
= Meet the computation challenge with power of distributed

parallel computing

How?
= GreenGene Distributed Supercomputer
= > 3000 processors from 4 distributed sites of super computers

22

11

GreenGene Distributed Supercomputer

5C2005

shawoom | National LambdaRail™ Infrastructure
Intel
(Dupont)
| uteh -
Sunnyvale] Va Tech

© 2005 National Lami ore information regarding NLR see http://www.nlr.net or contact info@nlr.net

bdaRail™ For m jar et ct fo@nlr.
W. Feng et al., “mpiBLAST on the GreenGene Distributed Supercomputer”, SC|05

Combine query segmentation and
‘ database segmentation

[SuperMaster]

GroupMaster GroupMaster GroupMaster

Replica NT Replica NT Replica

24

192

l Lessons Learned from NT vs NT Search

= Results
= Finish 526,000 sequences (1/7 NT) in one day

= Single supercomputer not enough

= Database segmentation is necessary to deal with
"Hard Queries" - parallelize the computation

= Case 1: 122k single query, take 64 procs 7 hours to
finish, 1.86 output size (448hrs on single processor)

= Case 2: 2M single query, not finished on 128 procs
within 12 hours
= mpiBLAST-pio demonstrate capability of
conducting large database against database
sequence alignment

25

l Acknowledgements

= The work of pioBLAST was funded in part or in full
by the US Department of Energy's Genomes to Life
program under the ORNL-PNNL project,
'Exploratory Data Intensive Computing for Complex
Biological Systems".

= The work of integrating data access optimizations of
EioBLAST into mpiBLAST-pio was supported through
EﬁgAgagnos National Laboratory contract W-7405-

= Other mpiBLAST-pio development contributors
Jeremy Archuleta (LANL), Avery Ching (Northwestern),
Pavan Balaji (OSV)

26

13

] References

= "Efficient Data Access for Parallel BLAST,"
191 Int’l Parallel & Distributed Processing
Symp., April 2005.

= "The Design, Implementation, and Evaluation
of mpiBLAST" Best Paper: Applications Track,
4th Int'l Conf. on Linux Clusters, Jun. 2003.

= "mpiBLAST: Delivering Super-Linear Speedup
with an Open-Source Parallelization of

BLAST," Pacific Symp. on Biocomputing, Jan.
2003.

27

14

