CU2CL: An Automated <u>CUDA-to-</u> Open<u>CL</u> Source-to-Source Translator

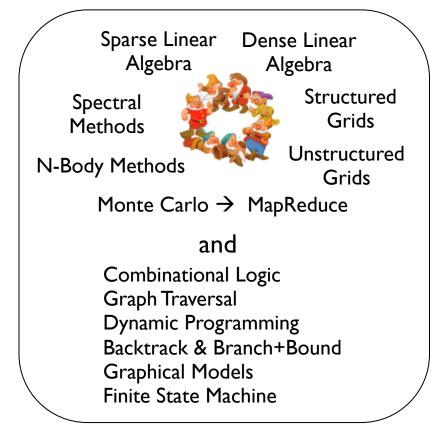
Wu FENG

Dept. of Computer Science and Dept. of Electrical & Computer Engineering NSF Center for High-Performance Reconfigurable Computing (CHREC) Center for High-End Computing Systems (CHECS)

Paying For Performance

- "The free lunch is over..." †
 - Programmers can no longer expect substantial increases in single-threaded performance.

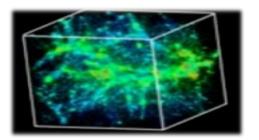
- The burden falls on developers to exploit parallel hardware for performance gains.
- + H. Sutter, "The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software," Dr. Dobb's Journal, 30(3), March 2005. (Updated August 2009.)
- How do we lower the cost of concurrency?



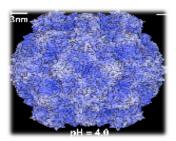
The Berkeley View ⁺

- Traditional Approach
 - Applications that target existing hardware and programming models
- Berkeley Approach
 - Hardware design that keeps future applications in mind
 - Basis for future applications?
 13 computational dwarfs

A computational dwarf is a pattern of communication & computation that is common across a set of applications.


Asanovic, K., et al. The Landscape of Parallel Computing Research: A View from Berkeley. Tech. Rep. UCB/EECS-2006-183, University of California, Berkeley, Dec. 2006.

VirginiaTech



Example of a Computational Dwarf: N-Body

- N-Body problems are studied in
 - Cosmology, particle physics, biology, and engineering
- All have similar structures
- An N-Body benchmark can provide meaningful insight to people in all these fields
- Optimizations may be generally applicable as well

RoadRunner Universe: Astrophysics

GEM: Molecular Modeling

OpenDwarfs (a.k.a. OpenCL and the 13 Dwarfs)

https://github.com/opendwarfs/OpenDwarfs

 Provide common algorithmic methods, i.e., dwarfs, in a language that is "write once, run anywhere" (CPU, GPU, or even FPGA), i.e., OpenCL

 Part of a larger umbrella project (2008-2012) funded by the NSF Center for High-Performance Reconfigurable Computing

Status of OpenCL & the 13 Dwarfs 2009 – 2011

Dwarf	Done	
Dense linear algebra	LU Decomposition	
Sparse linear algebra	Matrix Multiplication	
Spectral methods	FFT	
N-Body methods	GEM	$88x \rightarrow 371x$
Structured grids	SRAD	
Unstructured grids	CFD solver	
MapReduce		
Combinational logic	CRC	
Graph traversal	Breadth-First Search (BFS)	
Dynamic programming	Needleman-Wunsch	
Backtrack and branch-and-bound		
Graphical models	Hidden Markov Model	
Finite state machines	Temporal Data Mining	

Our Solutions

• Functional Portability (2 years \rightarrow real time)

- CU2CL (pronounced as "cuticle")
 An Automated <u>CUDA-to-OpenCL</u> Source-to-Source Translator

 $OpenMP \rightarrow OpenCL$

 $\mathsf{OpenCL} \rightarrow (\mathsf{AutoESL} + \mathsf{GCC}) \rightarrow \mathsf{FPGA}$

• Performance Portability ($88x \rightarrow 371x$)

 M. Daga, T. Scogland, and W. Feng, "Architecture-Aware Mapping and Optimizations on a 1600-Core GPU," 17th IEEE Int'l Conf. on Parallel and Distributed Systems, December 2011.

Our Solutions

• Functional Portability (2 years \rightarrow real time)

- CU2CL (pronounced as "cuticle")
 An Automated <u>CUDA-to-OpenCL</u> Source-to-Source Translator

 $OpenMP \rightarrow OpenCL$

OpenCL → (AutoESL+ GCC) → FPGA

- Performance Portability ($88x \rightarrow 371x$)
 - M. Daga, T. Scogland, and W. Feng, "Architecture-Aware Mapping and Optimizations on a 1600-Core GPU," 17th IEEE Int'l Conf. on Parallel and Distributed Systems, December 2011.

Forecast

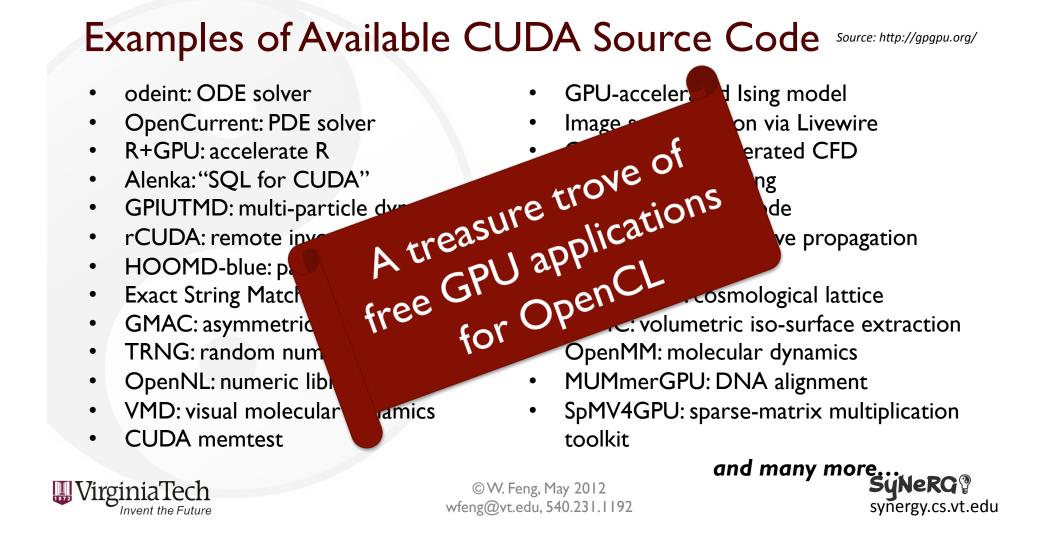
Motivation & Background

CU2CL: A CUDA-to-OpenCL Source-to-Source Translator

- Goals & Background
- Architecture
- Evaluation
 - Coverage, Translation Time, and Performance
- Future Work
- Summary

Overarching Goal: "Write Once, Run Anywhere"

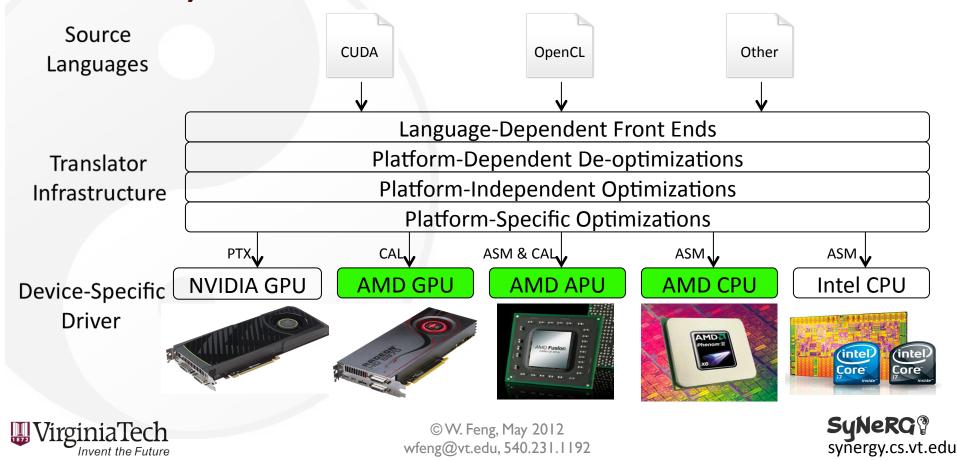
OpenCL Program	CUDA Program	
	CU2CL ("cuticle")	
OpenCL-supported C	NVIDIA GPUs	



Goals of CU2CL ("cuticle")

Automatically create a treasure trove of
 ... maintainable OpenCL code for future development

Goals of CU2CL ("cuticle")


- Automatically create a treasure trove of
 ... maintainable OpenCL code for future development
- Promote the increasing adoption of OpenCL
 - ... from AMD, ARM, & Intel to Altera, Xilinx, & Qualcomm

Already receiving *nearly daily requests* for the CU2CL tool ... from end users wanting to translate their codes

Ecosystem for Source-to-Source Translation

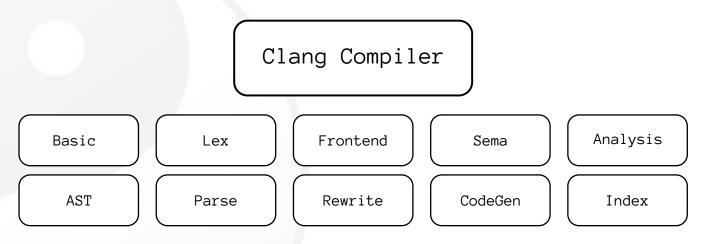
Forecast

Motivation & Background

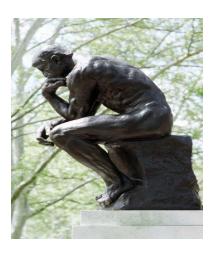
CU2CL: A CUDA-to-OpenCL Source-to-Source Translator

- Goals & Background
- Architecture
- Evaluation
 - Coverage, Translation Time, and Performance
- Future Work
- Summary

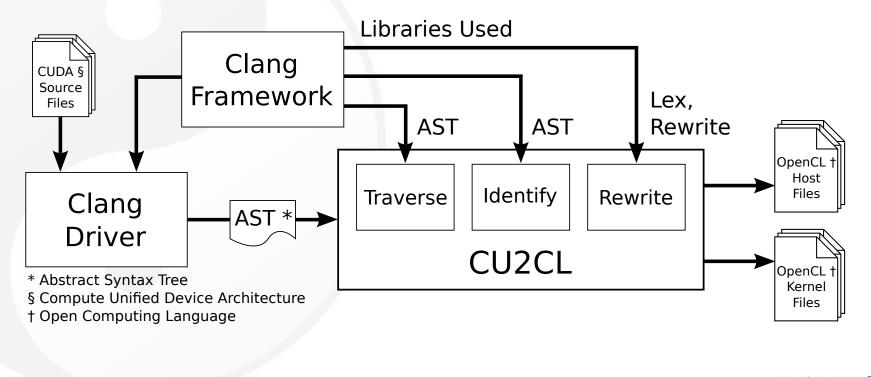
Translator Base to Build Upon


- Production-quality compiler
- Ease of extensibility

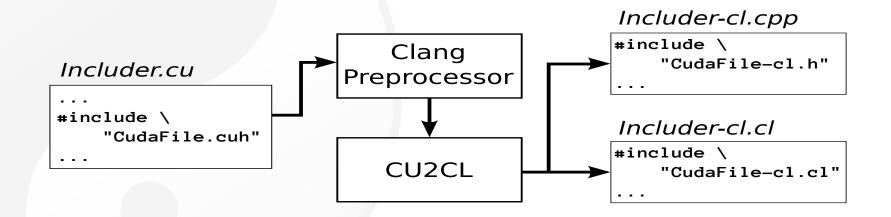
The Clang Compiler Framework


- Useful libraries for C/C++ source-level tools
- Powerful AST representation
- Clang compiler built on top

AST-Driven, String-Based Rewriting


- Characteristics
 - Does not modify the AST
 - Instead, edit text in source ranges
- Benefits
 - Useful for transformations with limited scope
 - Preserves formatting and comments

Architecture of CU2CL


Translation Procedure of CU2CL

- Traverse the AST
 - Clang's AST library, walking nodes and children
- Identify structures of interest
 - Common patterns arise
- Rewrite original source range as necessary
 - Variable declarations: rewrite type
 - Expressions: recursively rewrite full expression
 - Host code: remove from kernel files
 - Device code: remove from host files
 - #includes: rewrite to point to new files

WirginiaTech

Rewriting #includes

Forecast

Motivation & Background

CU2CL: A CUDA-to-OpenCL Source-to-Source Translator

- Goals & Background
- Architecture
- Evaluation
 - Coverage, Translation Time, and Performance
- Future Work
- Summary

Experimental Set-Up

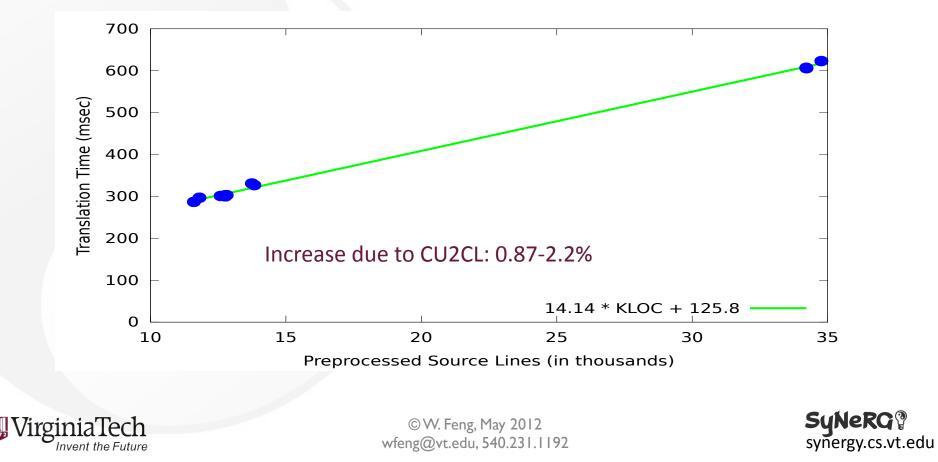
- CPU
 - 2 x 2.0-GHz Intel Xeon E5405 quad-core
 - 4 GB of Ram
- GPU
 - NVIDIA GTX 280
 - I GB of graphics memory
- Applications
 - CUDA SDK
 - asyncAPI, bandwidthTest, BlackScholes, matrixMul, scalarProd, vectorAdd
 - Rodinia
 - Back Propagation, Breadth-First Search, Hotspot, Needleman-Wunsch, SRAD

Coverage: CUDA SDK and Rodinia

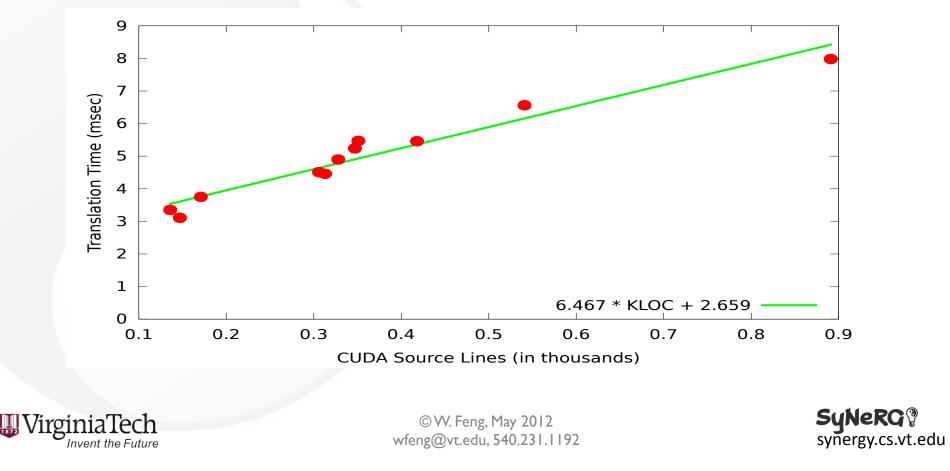
Source	Application	CUDA Lines	Changed	Percentage
	asyncAPI	136	4	97.06
	bandwidthTest	891	9	98.99
	BlackScholes	347	4	98.85
CUDA SDK	matrixMul	351	2	99.43
	scalarProd	171	4	97.66
	vectorAdd	147	0	100.00
	Back Propagation	313	5	98.40
	Breadth-First Search	306	8	97.39
Rodinia	Hotspot	328	7	97.87
	Needleman-Wunsch	418	0	100.00
	SRAD	541	0	100.00

Coverage: Molecular Modeling Application

Source	Application	CUDA Lines	Changed	Percentage
Virginia Tech	GEM	2,511	5	99.8


2,511 CUDA lines out of 6,727 total SLOC in GEM application

- Fundamental Application in Computational Biology
 - Simulate interactions between atoms & molecules for a period of time by approximations of known physics
- Example Usage
 - Understand mechanism behind the function of molecules
 - Catalytic activity, ligand binding, complex formation, charge transport



Model for Total Translation Time

Model for CU2CL-Only Translation Time

Status of OpenCL & the 13 Dwarfs

2009 – 2011 vs. CU2CL

Dwarf	Done
Dense linear algebra	LU Decomposition
Sparse linear algebra	Matrix Multiplication
Spectral methods	FFT
N-Body methods	GEM
Structured grids	SRAD
Unstructured grids	CFD solver
MapReduce	
Combinational logic	CRC
Graph traversal	BFS, Bitonic sort
Dynamic programming	Needleman-Wunsch
Backtrack and Branch-and-Bound	
Graphical models	Hidden Markov Model
Finite state machines	Temporal Data Mining

Translated Application Performance (sec)

Application	CUDA	Automatic OpenCL	Manual OpenCL
vectorAdd	0.0499	0.0516	0.0521
Hotspot	0.0177	0.0565	0.0561
Needleman-Wunsch	6.65	8.77	8.77
SRAD	1.25	1.55	1.54

- Automatically translated OpenCL codes yield similar execution times to manually translated OpenCL codes
- OpenCL performance lags CUDA (at least for OpenCL 1.0)
 - Similar for OpenCL 1.1

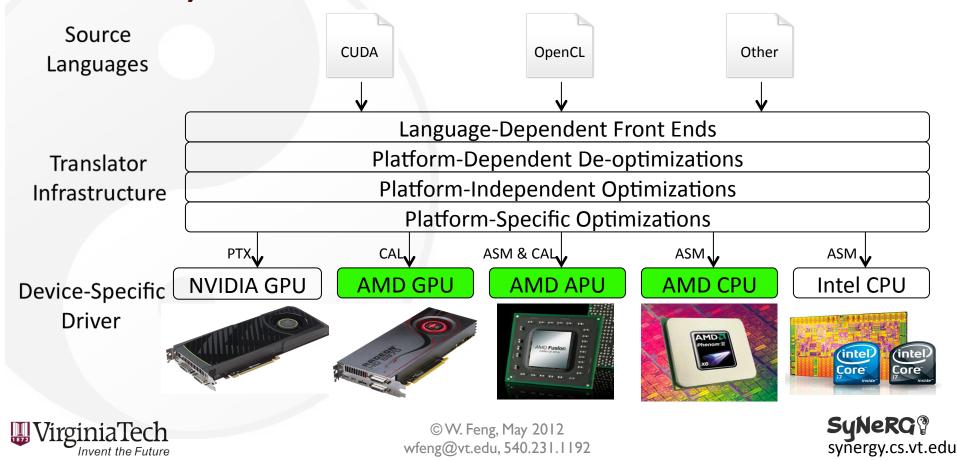
WirginiaTech

CU2CL with OpenCL and the 13 Dwarfs

Dwarf	Implemented	AMD GPU Unoptimized	NVIDIA GPU Unoptimized	AMD CPU Unoptimized
Dense Linear Algebra	LU Decomposition			
Sparse Linear Algebra	Matrix Multiplication			
Spectral Methods	FFT			
N-Body Methods	GEM	GEM	GEM	GEM
Structured Grids	SRAD			
Unstructured Grids	CFD Solver		X' X	
MapReduce	StreamMR	StreamMR		
Combinational Logic	CRC			
Graph Traversal	BFS, Bitonic Sort			
Dynamic Programming	Needleman-Wunsch		Smith-Waterman	
Backtrack and Branch-and-Bound				
Graphical Models	Hidden Markov Model			
Finite State Machines	Temporal Data Mining		TDM	

© W. Feng, May 2012 wfeng@vt.edu, 540.231.1192

synergy.cs.vt.edu


Status of OpenCL & the 13 Dwarfs 2009 – 2011

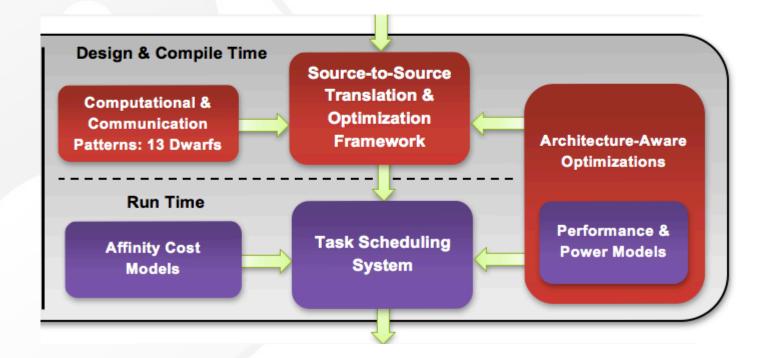
Dwarf	Done	
Dense linear algebra	LU Decomposition	
Sparse linear algebra	Matrix Multiplication	
Spectral methods	FFT	
N-Body methods	GEM	$88x \rightarrow 371x$
Structured grids	SRAD	
Unstructured grids	CFD solver	
MapReduce		
Combinational logic	CRC	
Graph traversal	Breadth-First Search (BFS)	
Dynamic programming	Needleman-Wunsch	
Backtrack and branch-and-bound		
Graphical models	Hidden Markov Model	
Finite state machines	Temporal Data Mining	

Ecosystem for Source-to-Source Translation

Our Solutions

• Functional Portability (2 years \rightarrow real time)

- CU2CL (pronounced as "cuticle")
 An Automated <u>CUDA-to-OpenCL</u> Source-to-Source Translator
 OpenMP → OpenCL
 - $\mathsf{OpenCL} \rightarrow (\mathsf{AutoESL} + \mathsf{GCC}) \rightarrow \mathsf{FPGA}$
- Performance Portability ($88x \rightarrow 371x$)
 - M. Daga, T. Scogland, and W. Feng, "Architecture-Aware Mapping and Optimizations on a 1600-Core GPU," 17th IEEE Int'l Conf. on Parallel and Distributed Systems, December 2011.



Potential Due to Optimization

The Bigger Picture

CU2CL: Acknowledgments

- Collaborators
 - Gabriel Martinez, M.S.
 - Mark Gardner, Ph.D.
- Infrastructure
 - Clang compiler and LLVM framework

© W. Feng, May 2012 wfeng@vt.edu, 540.231.1192 SyNeRG synergy.cs.vt.edu

Conclusion: General Approach for Translating CUDA to OpenCL

- First Instantiation: CU2CL
 - Profile
 - Approximately 2000 source lines of code
 - Extends open-source Clang compiler/framework
 - AST-driven, string-based source rewriting \rightarrow maintainable OpenCL code
 - Utility
 - Eliminates the hand translation of virtually all CUDA constructs
 - Translated OpenCL performance = hand-translated

Conclusion: General Approach for Translating CUDA to OpenCL

- First Instantiation: CU2CL
 - Profile
 - Approximately 2000 source lines of co
 - Extends open-source Clang compiler/fr
 - AST-driven, string-based source rewriting
 - Utility
 - Eliminates the hand translation of virtually all CUDA constructs
 - Translated OpenCL performance = hand-translated

© W. Feng, May 2012 wfeng@vt.edu, 540.231.1192

Already receiving nearly daily

from end users wanting to

translate their codes

requests for the CU2CL tool ...

annable OpenCL code

Our Solutions

- Functional Portability (2 years → real time)
 - CU2CL (pronounced as "cuticle")
 An Automated <u>CUDA-to-OpenCL</u> Source-to-Source Translator
 OpenMP → OpenCL
 OpenCL → (AutoESL+ GCC) → FPGA
- Performance Portability (88x \rightarrow 371x)
 - M. Daga, T. Scogland, and W. Feng, "Architecture-Aware Mapping and Optimizations on a 1600-Core GPU," 17th IEEE Int'l Conf. on Parallel and Distributed Systems, December 2011.

© W. Feng, May 2012 wfeng@vt.edu, 540.231.1192

OpenCl

Conclusion

General Approach for Translating CUDA to OpenCL

- First Instantiation: CU2CL
 - Profile
 - Approximately 2000 source lines of code
 - Extends open-source Clang compiler/framework
 - AST-driven, string-based source rewriting \rightarrow maintainable OpenCL code
 - Utility
 - Eliminates the hand translation of virtually all CUDA constructs
 - Translated OpenCL performance = hand-translated
 - Future Work
 - A translation ecosystem that also delivers performance portability

WirginiaTech

