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Abstract—While GPGPU stands for general-purpose compu-
tation on graphics processing units, the lack of explicit support
for inter-block communication on the GPU arguably hampers its
broader adoption as a general-purpose computing device. Inter-
block communication on the GPU occurs via global memory
and then requires barrier synchronization across the blocks,
i.e., inter-block GPU communication via barrier synchronization.
Currently, such synchronization is only available via the CPU,
which in turn, can incur significant overhead.

We propose two approaches for inter-block GPU communi-
cation via barrier synchronization: GPU lock-based synchro-
nization and GPU lock-free synchronization. We then evaluate
the efficacy of each approach via a micro-benchmark as well
as three well-known algorithms — Fast Fourier Transform
(FFT), dynamic programming, and bitonic sort. For the micro-
benchmark, the experimental results show that our GPU lock-
free synchronization performs 8.4 times faster than CPU explicit
synchronization and 4.0 times faster than CPU implicit synchro-
nization. When integrated with the FFT, dynamic programming,
and bitonic sort algorithms, our GPU lock-free synchronization
further improves performance by 10%, 26%, and 40%, respec-
tively, and ultimately delivers an overall speed-up of 70x, 13x,
and 24x, respectively.

I. INTRODUCTION

Today, improving the computational capability of a proces-
sor comes from increasing its number of processing cores
rather than increasing its clock speed. This is reflected in
both traditional multi-core processors and many-core graphics
processing units (GPUs).

Originally, GPUs were designed for graphics-based ap-
plications. With the elimination of key architecture limita-
tions, GPUs have evolved to become more widely used for
general-purpose computation, i.e., general-purpose computa-
tion on the GPU (GPGPU). Programming models such as
NVIDIA’s Compute Unified Device Architecture (CUDA) [22]
and AMD/ATI’s Brook+ [2] enable applications to be more
easily mapped onto the GPU. With these programming models,
more and more applications have been mapped to GPUs and
accelerated [6], [7], [10], [12], [18], [19], [23], [24], [26], [30].

However, GPUs typically map well only to data or task
parallel applications whose execution requires minimal or even
no inter-block communication [9], [24], [26], [30]. Why?
There exists no explicit support for inter-block communication

on the GPU. Currently, such inter-block communication occurs
via global memory and requires a barrier synchronization to
complete the communication, which is (inefficiently) imple-
mented via the host CPU. Hereafter, we refer to such CPU-
based barrier synchronization as CPU synchronization.

In general, when a program (i.e., kernel) executes on the
GPU, its execution time consists of three phases: (1) kernel
launch to the GPU, (2) computation on the GPU, and (3)
inter-block GPU communication via barrier synchronization.1

With different approaches for synchronization, the percentage
of time that each of these three phases takes will differ.
Furthermore, some of the phases may overlap in time. To
quantify the execution time of each phase, we propose a
general performance model that partitions the kernel execution
time into the three aforementioned phases. Based on our model
and code profiling while using the current state of the art
in barrier synchronization, i.e., CPU implicit synchronization
(see Section IV), inter-block communication via barrier syn-
chronization can consume more than 50% of the total kernel
execution time, as shown in Table I.

TABLE I
PERCENT OF TIME SPENT ON INTER-BLOCK COMMUNICATION

Algorithms FFT SWat Bitonic sort
% of time spent on inter- 17.8% 49.2% 59.6%block communication

(SWat: Smith-Waterman)

Hence, in contrast to previous work that mainly focuses on
optimizing the GPU computation, we focus on reducing the
inter-block communication time via barrier synchronization.
To achieve this, we propose a set of GPU synchronization
strategies, which can synchronize the execution of different
blocks without the involvement of the host CPU, thus avoiding
the costly operation of a kernel launch from the CPU to
GPU. To the best of our knowledge, this work is the first that
systematically addresses how to better support more general-
purpose computation by significantly reducing the inter-block

1Because inter-block GPU communication time is dominated by the inter-
block synchronization time, we will use inter-block synchronization time
instead of inter-block GPU communication time hereafter.



communication time (rather than the computation time) on a
GPU.

We propose two types of GPU synchronization, one with
locks and the other without. For the former, we use one
mutual-exclusive (mutex) variable and an atomic add operation
to implement GPU lock-based synchronization. With respect to
the latter, which we refer to as GPU lock-free synchronization,
we use two arrays, instead of mutex variables, and eliminate
the need for atomic operations. With this approach, each thread
within a single block controls the execution of a different
block, and the intra-block synchronization is achieved by
synchronizing the threads within the block with the existing
barrier function __syncthreads().

We then introduce these GPU synchronization strate-
gies into three different algorithms — Fast Fourier Trans-
form (FFT) [16], dynamic programming (e.g., Smith-
Waterman [25]), and bitonic sort [4] — and evaluate their
effectiveness. Specifically, based on our performance model,
we analyze the percentage of time spent computing versus
synchronizing for each of the algorithms.

Finally, according to the work of Volkov et al. [29],
correctness of inter-block communication via GPU synchro-
nization cannot be guaranteed unless a memory consistency
model is assumed. To solve this problem, a new function
__threadfence() is introduced in CUDA 2.2. This func-
tion will block the calling thread until prior writes to global
memory or shared memory visible to other threads [22]. It is
expected that additional overhead will be caused by integrating
__threadfence() into our barrier functions. From our
experiment results, when the number of blocks is more than
18 in the kernel, performance of all three algorithms are
worse than that with the CPU implicit synchronization. As
a result, though barriers can be implemented efficiently in
software, guaranteeing the inter-block communication correct-
ness with __threadfence() causes a lot of overhead, then
implementing efficient barrier synchronization via hardware or
improving the memory flush efficiency become necessary for
efficient and correct inter-block communication on GPUs. It is
worth noting that even without __threadfence() called
in our barrier functions, all results are correct in our thousands
of runs.

Overall, the contributions of this paper are four-fold. First,
we propose two GPU synchronization strategies for inter-
block synchronization. These strategies do not involve the host
CPU, and in turn, reduce the synchronization time between
blocks. Second, we propose a performance model for kernel
execution time and speedup that characterizes the efficacy of
different synchronization approaches. Third, we integrate our
proposed GPU synchronization strategies into three widely
used algorithms — Fast Fourier Transform (FFT), dynamic
programming, and bitonic sort — and obtain performance
improvements of 9.08%, 25.47%, and 40.39%, respectively,
over the traditional CPU synchronization approach. Fourth,
we show the cost of guaranteeing inter-block communication
correctness via __threadfence(). From our experiment
results, though our proposed barrier synchronization is effi-

cient, the low efficacy of __threadfence() causes a lot
of overhead, especially when the number of blocks in a kernel
is large.

The rest of the paper is organized as follows. Section II
provides an overview of the NVIDIA GTX 280 architecture
and CUDA programming model. The related work is described
in Section III. Section IV presents the time partition model
for kernel execution time. Section V describes our GPU
synchronization approaches. In Section VI, we give a brief
description of the algorithms that we use to evaluate our
proposed GPU synchronization strategies, and Section VII
presents and analyzes the experimental results. Section VIII
concludes the paper.

II. OVERVIEW OF CUDA ON THE NVIDIA GTX 280

The NVIDIA GeForce GTX 280 GPU card consists of 240
streaming processors (SPs), each clocked at 1296 MHz. These
240 SPs are grouped into 30 streaming multiprocessors (SMs),
each of which contains 8 streaming processors. The on-chip
memory for each SM contains 16,384 registers and 16 KB
of shared memory, which can only be accessed by threads
executing on that SM; this grouping of threads on an SM is
denoted as a block. The off-chip memory (or device memory)
contains 1 GB of GDDR3 global memory and supports a
memory bandwidth of 141.7 gigabytes per second (GB/s).
Global memory can be accessed by all threads and blocks
on the GPU, and thus, is often used to communicate data
across different blocks via a CPU barrier synchronization, as
explained later.

NVIDIA provides the CUDA programming model and
software environment [22]. It is an extension to the C program-
ming language. In general, only the compute-intensive and
data-parallel parts of a program are parallelized with CUDA
and are implemented as kernels that are compiled to the device
instruction set. A kernel must be launched to the device before
it can be executed.

In CUDA, threads within a block can communicate via
shared memory or global memory. The barrier function
__syncthreads() ensures proper communication. We re-
fer to this as intra-block communication.

However, there is no explicit support for data communica-
tion across different blocks, i.e., inter-block communication.
Currently, this type of data communication occurs via global
memory, followed by a barrier synchronization via the CPU.
That is, the barrier is implemented by terminating the current
kernel’s execution and re-launching the kernel, which is an
expensive operation.

III. RELATED WORK

Our work is most closely related to two areas of research:
(1) algorithmic mapping of data parallel algorithms onto the
GPU, specifically for FFT, dynamic programming, and bitonic
sort and (2) synchronization protocols in multi- and many-core
environments.

To the best of our knowledge, all known algorithmic map-
pings of FFT, dynamic programming, and bitonic sort take



the same general approach. The algorithm is mapped onto the
GPU in as much of a “data parallel” or “task parallel” fashion
as possible in order to minimize or even eliminate inter-
block communication because such communication requires
an expensive barrier synchronization. For example, running a
single (constrained) problem instance per SM, i.e., 30 separate
problem instances on the NVIDIA GTX 280, obviates the need
for inter-block communication altogether.

To accelerate FFT [16], Govindaraju et al. [6] use efficient
memory access to optimize FFT performance. Specifically,
when the number of points in a sequence is small, shared
memory is used; if there are too many points in a sequence
to store in shared memory, then techniques for coalesced
global memory access are used. In addition, Govindaraju
et al. propose a hierarchical implementation to compute a
large sequence’s FFT by combining the FFTs of smaller
subsequences that can be calculated on shared memory. In
all of these FFT implementations, the necessary barrier syn-
chronization is done by the CPU via kernel launches. Another
work is that of Volkov et al. [30], which tries to accelerate
the FFT by designing a hierarchical communication scheme
to minimize inter-block communication. Finally, Nukada et al.
[20] accelerate the 3-D FFT through shared memory usage and
optimizing the number of threads and registers via appropriate
localization. Note that all of the aforementioned approaches
focus on optimizing the GPU computation and minimizing
or eliminating the inter-block communication rather than by
optimizing the performance of inter-block communication.

Past research on mapping dynamic programming, e.g., the
Smith-Waterman (SWat) algorithm, onto the GPU uses graph-
ics primitives [14], [15] in a task parallel fashion. More recent
work uses CUDA, but again, largely in a task parallel man-
ner [18], [19], [26] or in a fine-grain parallel approach [31].
In the task parallel approach, no inter-block communication
is needed, but the problem size it supports is limited to 1K
characters. While the fine-grain parallel approach can support
sequences of up to 7K characters, inter-block communication
time consumes about 50% of the total matrix filling time.
So if a better inter-block synchronization method is used,
performance improvements can be obtained.

For bitonic sort, Greβ et al. [7] improve the algorithmic
complexity of GPU-ABisort to O (n log n) with an adaptive
data structure that enables merges to be done in linear time.
Another parallel implementation of the bitonic sort is in the
CUDA SDK [21], but there is only one block in the kernel to
use the available barrier function __syncthreads(), thus
restricting the maximum number of items that can be sorted
to 512 — the maximum number of threads in a block. If our
proposed inter-block GPU synchronization is used, multiple
blocks can be set in the kernel, which in turn, will significantly
increase the maximum number of items that can be sorted.

Many types of software barriers have been designed for
shared-memory environments [1], [3], [8], [11], [17], but none
of them can be directly applied to GPU environments. This
is because multiple CUDA thread blocks can be scheduled
to be executed on a single SM and the CUDA blocks do

not yield to the execution. That is, blocks run to completion
once spawned by the CUDA thread scheduler. This may result
in deadlocks, and thus, cannot be resolved in the same way
as in traditional CPU processing environments, where one
can yield the waiting process to execute other processes.
One way of addressing this is our GPU lock-based barrier
synchronization [31]. This approach leverages a traditional
shared mutex barrier and avoid deadlock by ensuring a one-
to-one mapping between the SMs and the thread blocks.

Cederman et al. [5] implement a dynamic load-balancing
method on the GPU that is based on the lock-free synchro-
nization method found on traditional multi-core processors.
However, this scheme controls task assignment instead of
addressing inter-block communication. In addition, we note
that lock-free synchronization generally performs worse than
lock-based methods on traditional multi-core processors, but
its performance is better than that of the lock-based method
on the GPU in our work.

The work of Stuart et al. [27] focuses on data communica-
tion between multiple GPUs, i.e., inter-GPU communication.
Though their approach can be used for inter-block communi-
cation across different SMs on the same GPU, the performance
is projected to be quite poor because data needs to be moved
to the CPU host memory first and then transferred back to the
device memory, which is unnecessary for data communication
on a single GPU card.

The most closely related work to ours is that of Volkov et al.
[29]. Volkov et al. propose a global software synchronization
method that does not use atomic operations to accelerate
dense linear-algebra constructs. However, as [29] notes, their
synchronization method has not been implemented into any
real application to test the performance improvement. Further-
more, their proposed synchronization cannot guarantee that
previous accesses to all levels of the memory hierarchy have
completed. Finally, Volkov et al. used only one thread to check
all arrival variables, hence serializing this portion of inter-
block synchronization and adversely affecting its performance.
In contrast, our proposed GPU synchronization approaches
guarantee the completion of memory accesses with the existing
memory access model in CUDA. This is because a new
function __threadfence() is added in CUDA 2.2, which
can guarantee all writes to global memory visible to other
threads, so correctness of reads after the barrier function
can be guaranteed. In addition, we integrate each of our
GPU synchronization approaches in a micro-benchmark and
three well-known algorithms: FFT, dynamic programming, and
bitonic sort. Finally, we use multiple threads in a block to
check all the arrival variables, which can be executed in
parallel, thus achieving a good performance.

IV. A MODEL FOR KERNEL EXECUTION TIME AND
SPEEDUP

In general, a kernel’s execution time on GPUs consists of
three components — kernel launch time, computation time,



Fig. 1. Total Kernel Execution Time Composition

(a) CPU explicit synchronization

(b) CPU implicit synchronization

Fig. 2. CPU Explicit/Implicit Synchronization Function Call

and synchronization time, which can be represented as

T =
M∑
i=1

(
t
(i)
O + t

(i)
C + t

(i)
S

)
(1)

where M is the number of kernel launches, t(i)O is the kernel
launch time, t(i)C is the computation time, and t

(i)
S is the

synchronization time for the ith kernel launch as shown in
Figure 1. Each of the three time components is impacted by a
few factors. For instance, the kernel launch time depends on
the data transfer rate from the host to the device as well as the
size of kernel code and parameters. For the computation time,
it is affected by memory access methods, thread organization
(number of threads per block and number of blocks per grid)
in the kernel, etc. Similarly, the synchronization time will be
different with different synchronization approaches used.

Figure 2 shows the pseudo-code of implementing bar-
rier synchronization via kernel launches, where Figure 2(a)
is the function call of CPU Explicit Synchronization and
Figure 2(b) is for CPU Implicit Synchronization. As we
can see, in the CPU explicit synchronization, the kernel
function __kernel_func() is followed by the function
cudaThreadSynchronize(), which will not return un-
til all prior operations on the device are completed. As a
result, the three operations — kernel launch, computation,
and synchronization are executed sequentially in the CPU
explicit synchronization. In contrast, in the CPU implicit syn-
chronization, cudaThreadSynchronize() is not called.
Since kernel launch is an asynchronous operation, if there are
multiple kernel launches, kernel launch time can be overlapped
by previous kernels’ computation time and synchronization
time. So, in the CPU implicit synchronization approach, except
for the first kernel launch, subsequent ones are pipelined
with computation and synchronization of previous kernel’s
execution, and the execution time of multiple kernel launches

Fig. 3. GPU Synchronization Function Call

can be represented as

T = t
(1)
O +

M∑
i=1

(
t
(i)
C + t

(i)
CIS

)
(2)

where, M is the number of kernel launches, t(1)O is the time
for the first kernel launch, t(i)C and t(i)CIS are the computation
time and synchronization time for the ith kernel launch,
respectively.

With respect to the GPU Synchronization, Figure 3 shows
the pseudo-code of how functions are called. In this approach,
a kernel is launched only once. When barrier synchroniza-
tion is needed, a barrier function __gpu_sync() is called
instead of re-launching the kernel. In Figure 3, the function
__device_func() implements the same functionality as
the kernel function __kernel_func() in Figure 2, but it
is a device function instead of a global one, so it is called on
the device rather than on the host. In the GPU synchronization,
kernel execution time can be expressed as

T = tO +
M∑
i=1

(
t
(i)
C + t

(i)
GS

)
(3)

where, M is the number of barriers needed for the kernel’s
execution, tO is the kernel launch time, t(i)C and t

(i)
GS are the

computation time and synchronization time for the ith loop,
respectively.

From Equations (1), (2), and (3), an algorithm can be
accelerated by decreasing any of the three time components.
With the properties of kernel launch time considered2, we
ignore the kernel launch time in the following discussion. If
the synchronization time is reduced, according to the Amdahl’s
Law, the maximum kernel execution speedup is constrained by

ST =
T

tC + (T − tC) /SS

=
1(

tC
T

)
+
(
1− tC

T

)
/SS

=
1

ρ+ (1− ρ) /SS
(4)

where ST is the kernel execution speedup gained with reduc-
ing the synchronization time, ρ = tC

T is the percentage of
the computation time tC in the total kernel execution time T ,
tS = T − tC is the synchronization time of the CPU implicit

2Three properties are considered. First, kernel launch time can be combined
with the synchronization time in the CPU explicit synchronization; Second, it
can be overlapped in CPU implicit synchronization; Third, kernel is launched
only once in the GPU synchronization.



synchronization, which is our baseline as mentioned later. SS
is the synchronization speedup. Similarly, if only computation
is accelerated, the maximum overall speedup is constrained by

ST =
1

ρ/SC + (1− ρ)
(5)

where SC is the computation speedup.
In Equation (4), the smaller the ρ is, the more speedup can

be gained with a fixed SS ; while in Equation (5), the larger
the ρ is, the more speedup can be obtained with a fixed SC .
In practice, different algorithms have different ρ values. For
example, for the three algorithms used in this paper, FFT has
a ρ value larger than 0.8, while SWat and bitonic sort have
a ρ of about 0.5 and 0.4, respectively. According to Equation
(5), corresponding to these ρ values, if only the computation
is accelerated, maximum speedup of the three aforementioned
algorithms are shown in Table II. As can be observed, very
low speedup can be obtained in these three algorithms if only
the computation is accelerated. Since most of the previous
work focuses on optimizing the computation, i.e., decreases
the computation time tC , the more optimization is performed
on an algorithm, the smaller ρ will become. At this time,
decreasing the computation time will not help much for the
overall performance. On the other side, if we decrease the
synchronization time, large kernel execution speedup can be
obtained.

TABLE II
POSSIBLE MAXIMUM SPEEDUP WITH ONLY COMPUTATION

ACCELERATED

Algorithms FFT SWat Bitonic sort
ρ 0.82 0.51 0.40

Possible maximum speedup 5.61 2.03 1.68

In this paper, we will focus on decreasing the synchroniza-
tion time. This is due to three facts:

1) There has been a lot of work [6], [10], [15], [19], [25]
proposed to decrease the computation time. Techniques
such as shared memory usage and divergent branch
removing have been widely used.

2) No work has been done to decrease the synchronization
time for algorithms to be executed on a GPU;

3) In some algorithms, the synchronization time consumes
a large part of the kernel execution time (e.g., SWat and
bitonic sort in Figure 12), which results in a small ρ
value.

With the above model for speedup brought by synchro-
nization time reduction, we propose two GPU synchronization
approaches in the next section, and time consumption of each
of them is modeled and analyzed quantitatively.

V. PROPOSED GPU SYNCHRONIZATION

Since in CUDA programming model, the execution of a
thread block is non-preemptive, care must be taken to avoid
deadlocks in GPU synchronization design. Consider a scenario
where multiple thread blocks are mapped to one SM and the

active block is waiting for the completion of a global barrier.
A deadlock will occur in this case because unscheduled thread
blocks will not be able to reach the barrier without preemption.
Our solution to this problem is to have a one-to-one mapping
between thread blocks and SMs. In other words, for a GPU
with ‘Y’ SMs, we ensure that at most ‘Y’ blocks are used in
the kernel. In addition, we allocate all available shared memory
on an SM to each block so that no two blocks can be scheduled
to the same SM because of the memory constraint.

In the following discussion, we will present two alternative
GPU synchronization designs: GPU lock-based synchroniza-
tion and GPU lock-free synchronization. The first one uses
a mutex variable and CUDA atomic operations; while the
second method uses a lock-free algorithm that avoids the use
of expensive CUDA atomic operations.

A. GPU Lock-Based Synchronization

The basic idea of GPU lock-based synchronization [31]
is to use a global mutex variable to count the number of
thread blocks that reach the synchronization point. As shown
in Figure 4, in the barrier function __gpu_sync(), after a
block completes its computation, one of its threads (we call it
the leading thread.) will atomically add 1 to g_mutex. The
leading thread will then repeatedly compare g_mutex to a
target value goalVal. If g_mutex is equal to goalVal,
the synchronization is completed and each thread block can
proceed with its next stage of computation. In our design,
goalVal is set to the number of blocks N in the kernel when
the barrier function is first called. The value of goalVal is
then incremented by N each time when the barrier function is
successively called. This design is more efficient than keeping
goalVal constant and resetting g_mutex after each barrier
because the former saves the number of instructions and avoids
conditional branching.

1 //the mutex variable
2 __device__ volatile int g_mutex;
3
4 //GPU lock-based synchronization function
5 __device__ void __gpu_sync(int goalVal)
6 {
7 //thread ID in a block
8 int tid_in_block = threadIdx.x * blockDim.y
9 + threadIdx.y;

10
11 // only thread 0 is used for synchronization
12 if (tid_in_block == 0) {
13 atomicAdd((int *)&g_mutex, 1);
14
15 //only when all blocks add 1 to g_mutex
16 //will g_mutex equal to goalVal
17 while(g_mutex != goalVal) {
18 //Do nothing here
19 }
20 }
21 __syncthreads();
22 }

Fig. 4. Code snapshot of the GPU Lock-Based Synchronization

In the GPU lock-based synchronization, the execution time
of the barrier function __gpu_sync() consists of three



Fig. 5. Time Composition of GPU Lock-Based Synchronization

parts — atomic addition, checking of g_mutex, and synchro-
nization of threads within a block via __syncthreads().
The atomic addition can only be executed sequentially by
different blocks, while the g_mutex checking and intra-block
synchronization can be executed in parallel. Assume there are
N blocks in the kernel, the intra-block synchronization time
is ts, time of each atomic addition and g_mutex checking is
ta and tc, respectively, if all blocks finish their computation at
the same time as shown in Figure 5, then the time to execute
__gpu_sync() is

tGBS = N · ta + tc + ts (6)

where N is the number of blocks in the kernel. From Equa-
tion (6), the cost of GPU lock-based synchronization increases
linearly with N .

B. GPU Lock-Free Synchronization

In the GPU lock-based synchronization, the mutex variable
g_mutex is added with the atomic function atomicAdd().
This means the addition of g_mutex can only be executed
sequentially even though these operations are performed in
different blocks. In this section, we propose a lock-free syn-
chronization approach that avoids the use of atomic operations
completely. The basic idea of this approach is to assign a
synchronization variable to each thread block, so that each
block can record its synchronization status independently
without competing for a single global mutex variable.

As shown in Figure 6, our lock-free synchronization ap-
proach uses two arrays Arrayin and Arrayout to coor-
dinate the synchronization requests from various blocks. In
these two arrays, each element is mapped to a thread block
in the kernel, i.e., element i is mapped to thread block i. The
algorithm is outlined into three steps as follows:

1) When block i is ready for communication, its leading
thread (thread 0) sets element i in Arrayin to the
goal value goalVal. The leading thread in block i
then busy-waits on element i of Arrayout to be set to
goalVal.

2) The first N threads in block 1 repeatedly check if all
elements in Arrayin are equal to goalVal, with
thread i checking the ith element in Arrayin. Af-
ter all elements in Arrayin are set to goalVal,

1 //GPU lock-free synchronization function
2 __device__ void __gpu_sync(int goalVal,
3 volatile int *Arrayin, volatile int *Arrayout)
4 {
5 // thread ID in a block
6 int tid_in_blk = threadIdx.x * blockDim.y
7 + threadIdx.y;
8 int nBlockNum = gridDim.x * gridDim.y;
9 int bid = blockIdx.x * gridDim.y + blockIdx.y;

10
11 // only thread 0 is used for synchronization
12 if (tid_in_blk == 0) {
13 Arrayin[bid] = goalVal;
14 }
15
16 if (bid == 1) {
17 if (tid_in_blk < nBlockNum) {
18 while (Arrayin[tid_in_blk] != goalVal){
19 //Do nothing here
20 }
21 }
22 __syncthreads();
23
24 if (tid_in_blk < nBlockNum) {
25 Arrayout[tid_in_blk] = goalVal;
26 }
27 }
28
29 if (tid_in_blk == 0) {
30 while (Arrayout[bid] != goalVal) {
31 //Do nothing here
32 }
33 }
34 __syncthreads();
35 }

Fig. 6. Code snapshot of the GPU Lock-Free Synchronization

each checking thread then sets the corresponding ele-
ment in Arrayout to goalVal. Note that the intra-
block barrier function __syncthreads() is called
by each checking thread before updating elements of
Arrayout.

3) A block will continue its execution once its leading
thread sees the corresponding element in Arrayout
is set to goalVal.

It is worth noting that in the step 2) above, rather than
having one thread to check all elements of Arrayin in
serial as in [29], we use N threads to check the elements
of Arrayin in parallel. This design choice turns out to
save considerable synchronization overhead according to our
performance profiling. Note also that goalVal is incre-
mented each time when the function __gpu_sync() is
called, similar to the implementation of the GPU lock-based
synchronization. Finally, this approach can be implemented
in the Brook+ programming model of AMD/ATI GPUs in
the same way, where an intra-block synchronization function
syncGroup() is provided.

From Figure 6, there is no atomic operation in the GPU
lock-free synchronization. All the operations can be exe-
cuted in parallel. Synchronization of different thread blocks
is controlled by threads in a single block, which can
be synchronized efficiently by calling the barrier function
__syncthreads(). From Figure 7, the execution time of
__gpu_sync() is composed of six parts and calculated as

tGFS = tSI + tCI + 2ts + tSO + tCO (7)



Fig. 7. Time Composition of GPU Lock-Free Synchronization

where, tSI is the time for setting an element in Arrayin,
tCI is the time to check an element in Arrayin, ts is the
intra-block synchronization time, tSO and tCO are the time for
setting and checking an element in Arrayout, respectively.
From Equation (7), execution time of __gpu_sync() is
unrelated to the number of blocks in a kernel3.

C. Synchronization Time Verification via a Micro-benchmark

To verify the execution time of the synchronization function
__gpu_sync() for each synchronization method, a micro-
benchmark to compute the mean of two floats for 10,000 times
is used. In other words, in the CPU synchronization, each
kernel calculates the mean once and the kernel is launched
10,000 times; in the GPU synchronization, there is a 10,000-
round for loop used, and the GPU barrier function is called in
each loop. With each synchronization method, their execution
time is shown in Figure 8. In the micro-benchmark, each
thread will compute one element, the more blocks and threads
are set, the more elements are computed, i.e., computation
is performed in a weak-scale way. So the computation time
should be approximately constant. Here, each result is the
average of three runs.

From Figure 8, we have the following observations: 1) The
CPU explicit synchronization takes much more time than the
CPU implicit synchronization. This is due to, in the CPU
implicit synchronization, kernel launch time is overlapped for
all kernel launches except the first one; but in the CPU explicit
synchronization, kernel launch time is not. 2) Even for the
CPU implicit synchronization, a lot of synchronization time
is needed. From Figure 8, the computation time is only about
5ms, while the time needed by the CPU implicit synchroniza-
tion is about 60ms, which is 12 times the computation time. 3)
For the GPU lock-based synchronization, the synchronization
time is linear to the number of blocks in a kernel, and more
synchronization time is needed for a kernel with a larger

3Since there are at most 30 blocks that can be set on a GTX 280, threads
that check Arrayin are in the same warp, which are executed in parallel. If
there are more than 32 blocks in the kernel, more than 32 threads are needed
for checking Arrayin and different warps should be executed serially on an
SM.

Fig. 8. Execution Time of the Micro-benchmark.

number of blocks, which matches very well to Equation (6) in
Section V-A. Compared to the CPU implicit synchronization,
when the block number is less than 24, its synchronization
time is less; otherwise, more time is needed for the GPU lock-
based synchronization. The reason is that, as we analyzed in
Section V-A, more blocks means more atomic add operations
should be executed for the synchronization. 4) For the GPU
lock-free synchronization, since there are no atomic operations
used, all the operations can be executed in parallel, which
makes its synchronization time unrelated to the number of
blocks in a kernel, i.e., the synchronization time is almost a
constant value. Furthermore, the synchronization time is much
less (for more than 3 blocks set in the kernel) than that of all
other synchronization methods.

From the micro-benchmark results, the CPU explicit syn-
chronization needs the most synchronization time, and in
practice, there is no need to use this method. So in the
following sections, we will not use it any more, i.e., only the
CPU implicit and two GPU synchronization approaches are
compared and analyzed.

VI. ALGORITHMS USED FOR PERFORMANCE EVALUATION

Inter-block synchronization can be used in many algo-
rithms. In this section, we choose three of them that can
benefit from our proposed GPU synchronization methods. The
three algorithms are Fast Fourier Transformation [16], Smith-
Waterman [25], and bitonic sort [4]. In the following, a brief
description is given for each of them.

A. Fast Fourier Transformation

A Discrete Fourier Transformation (DFT) transforms a
sequence of values into its frequency components or, inversely,
converts the frequency components back to the original data
sequence. For a data sequence x0, x1, · · · , xN−1, the DFT is
computed as Xk =

∑N−1
i=0 xie

−j2πk i
n , k = 0, 1, 2, · · · , N−1,

and the inverse DFT is computed as xi = 1
N

∑N−1
k=0 Xke

j2πi k
n ,

i = 0, 1, 2, · · · , N − 1. DFT is used in many fields, but
direct DFT computation is too slow to be used in practice.
Fast Fourier Transformation (FFT) is a fast way of DFT
computation. Generally, computing DFT directly by the defi-
nition takes O

(
N2
)

arithmetical operations, while FFT takes



only O (N log (N)) arithmetical operations. The computation
difference can be substantial for long data sequence, especially
when the sequence has thousands or millions of points. A
detailed description of the FFT algorithm can be found in [16].

For an N -point input sequence, FFT is computed in log (N)
iterations. Within each iteration, computation of different
points is independent, which can be done in parallel, because
they depend on points only from its previous iteration. On
the other hand, computation of an iteration cannot start until
that of its previous iteration completes, which makes a barrier
necessary across the computation of different iterations [6].
The barrier used here can be multiple kernel launches (CPU
synchronization) or the GPU synchronization approaches pro-
posed in this paper.

B. Dynamic Programming: Smith-Waterman Algorithm

Smith-Waterman (SWat) is a well-known algorithm for local
sequence alignment. It finds the maximum alignment score
between two nucleotide or protein sequences based on the
Dynamic Programming paradigm [28], in which the segments
of all possible lengths are compared to optimize the alignment
score. In this process, first, intermediate alignment scores are
stored in a DP matrix M before the matrix is inspected,
and then, the local alignment corresponding to the highest
alignment score is generated. As a result, the SWat algorithm
can be broadly classified into two phases: (1) matrix filling
and (2) trace back.

In the matrix filling process, a scoring matrix and a gap-
penalty scheme are used to control the alignment score calcu-
lation. The scoring matrix is a 2-dimensional matrix storing
the alignment score of individual amino acid or nucleotide
residues. The gap-penalty scheme provides an option for gaps
to be introduced in the alignment to obtain a better alignment
result and it will cause some penalty to the alignment score.
In our implementation of SWat, the affine gap penalty is used
in the alignment, which consists of two penalties — the open-
gap penalty, o, for starting a new gap and the extension-gap
penalty, e, for extending an existing gap. Generally, an open-
gap penalty is larger than an extension-gap penalty in the affine
gap.

With the above scoring scheme, the DP matrix M is filled
in a wavefront pattern, i.e. the matrix filling starts from the
northwest corner element and goes toward the southeast corner
element. Only after the previous anti-diagonals are computed
can the current one be calculated as shown in Figure 9. The
calculation of each element depends on its northwest, west,
and north neighbors. As a result, elements in the same anti-
diagonal are independent of each other and can be calculated
in parallel; while barriers are needed across the computation
of different anti-diagonals. For the trace back, it is essentially
a sequential process that generates the local alignment with
the highest score. In this paper, we only consider accelerating
the matrix filling because it occupies more than 99% of the
execution time.

Fig. 9. Wavefront Pattern and Dependency in the Matrix Filling Process.

C. Bitonic Sort

Bitonic sort is one of the fastest sorting networks [13],
which is a special type of sorting algorithm devised by Ken
Batcher [4]. For N numbers to be sorted, the resulting network
consists of O

(
n log2 (n)

)
comparators and has a delay of

O
(
log2 (n)

)
.

The main idea behind bitonic sort is using a divide-and-
conquer strategy. In the divide step, the input sequence is
divided into two subsequences and each sequence is sorted
with bitonic sort itself, where one is in the ascending order and
the other is in the descending order. In the conquer step, with
the two sorted subsequences as the input, the bitonic merge is
used to combine them to get the whole sorted sequence [13].
The main property of bitonic sort is, no matter what the input
data are, a given network configuration will sort the input
data in a fixed number of iterations. In each iteration, the
numbers to be sorted are divided into pairs and a compare-
and-swap operation is applied on it, which can be executed
in parallel for different pairs. More detailed information about
bitonic sort is in [4]. In bitonic sort, the independence within
an iteration makes it suitable to be executed in parallel and the
data dependency across adjacent iterations makes it necessary
for a barrier to be used.

VII. EXPERIMENT RESULTS AND ANALYSIS

A. Overview

To evaluate the performance of our proposed GPU syn-
chronization approaches, we implement them in the three
algorithms described in Section VI. For the two CPU syn-
chronization approaches, we only implement the CPU implicit
synchronization because its performance is much better than
the CPU explicit synchronization. With implementations using
each of the synchronization approaches for each algorithm,
their performance is evaluated in four aspects: 1) Kernel
execution time decrease brought by our proposed GPU syn-
chronization approaches and its variation against the number
of blocks in the kernel; 2) According to the kernel execution
time partition model in Section IV, we calculate the synchro-
nization time of each synchronization approach. Similarly, the
synchronization time variation against the number of blocks in
kernels is presented; 3) Corresponding to the best performance
of each algorithm with each synchronization approach, the
percentages of computation time and synchronization time are



demonstrated and analyzed; 4) The costs of guaranteeing inter-
block communication correctness via __threadfence()
on GPUs are shown.

Our experiments are performed on a GeForce GTX 280
GPU card, which has 30 SMs and 240 processing cores with
the clock speed 1296MHz. The on-chip memory on each
SM contains 16K registers and 16KB shared memory, and
there are 1GB GDDR3 global memory with the bandwidth
of 141.7GB/Second on the GPU card. For the host machine,
The processor is an Intel Core 2 Duo CPU with 2MB of
L2 cache and its clock speed is 2.2GHz. There are two 2GB
of DDR2 SDRAM equipped on the machine. The operating
system on the host machine is the 64-bit Ubuntu GNU/Linux
distribution. The NVIDIA CUDA 2.2 SDK toolkit is used
for all the program execution. Similar as that in the micro-
benchmark, each result is the average of three runs.

B. Kernel Execution Time

Figure 10 shows the kernel execution time decrease with our
proposed GPU synchronization approaches and its variation
versus the number of blocks in the kernel. Here, we demon-
strate the kernel execution time with the block number from 9
to 30. This is due to, when the number of blocks in the kernel
is larger than 30 or less than 9, kernel execution times are
more than that with block number between 9 and 30. Also, if a
GPU synchronization approach is used, the maximum number
of blocks in a kernel is 30. In our experiments, the number
of threads per block is 448, 256, and 512 for FFT, SWat, and
bitonic sort, respectively. Figure 10(a) shows the performance
of FFT, Figure 10(b) is for SWat, and Figure 10(c) displays
the kernel execution time of bitonic sort.

From Figure 10, we can see that, first, with the increase
of the number of blocks in the kernel, kernel execution time
will decrease. The reason is, with more blocks (from 9 to 30)
in the kernel, more resources can be used for the computa-
tion, which will accelerate the computation; Second, with the
proposed GPU synchronization approaches used, performance
improvements are observed in all the three algorithms. For
example, compared to the CPU implicit synchronization, with
the GPU lock-free synchronization and 30 blocks in the kernel,
kernel execution time of FFT decreases from 1.179ms to
1.072ms, which is an 9.08% decrease. For SWat and bitonic
sort, this value is 25.47% and 40.39%, respectively. Table III
shows the speedup increase corresponding to the performance
improvement by comparing to a sequential implementation of
each algorithm. As we can see, speedup of FFT increases
from 62.50× with the CPU implicit synchronization to 69.93×
with the GPU lock-free synchronization. Similarly, speedup of
SWat and bitonic sort increases from 9.53× to 12.93× and
from 14.40× to 24.02×, respectively. Third, kernel execution
time difference between the CPU implicit synchronization and
the proposed GPU synchronization of FFT is much less than
that of SWat and bitonic sort. This is due to, in FFT, the
computation load between two barriers is much more than
that of SWat and bitonic sort. According to Equation (4),
kernel execution time change caused by the synchronization

(a) FFT

(b) SWat

(c) Bitonic sort

Fig. 10. Kernel Execution Time versus Number of Blocks in the Kernel

TABLE III
ADDITIONAL SPEEDUP OBTAINED BY BETTER SYNCHRONIZATION

APPROACHES

Algorithms FFT SWat Bitonic sort
Speedup with CPU 62.50 9.53 14.40implicit synchronization
Speedup with GPU 67.14 10.89 17.27lock-based synchronization
Speedup with GPU 69.93 12.93 24.02lock-free synchronization

time decrease in FFT is not as much as that in SWat and
bitonic sort.

In addition, among the two implementations with our pro-
posed GPU synchronization approaches, 1) With more blocks
set in the kernel, kernel execution time decrease rate of the
GPU lock-based synchronization is not as fast as the GPU
lock-free synchronization. This is compatible with Equation
(6), i.e., as more blocks are configured, more time is needed
for the GPU lock-based synchronization. 2) In the three algo-
rithms, performance with the GPU lock-free synchronization



is always the best. The more blocks are set in the kernel, the
more performance improvement can be obtained if compared
to the GPU lock-based synchronization approach. The reason
is the time needed for the GPU lock-free synchronization is
almost a constant value, but synchronization time will increase
in the GPU lock-based synchronization when more blocks are
set in the kernel.

C. Synchronization Time

In this section, we show the synchronization time variation
versus the number of blocks in the kernel. Here, the syn-
chronization time is the difference between the total kernel
execution time and the computation time, which is obtained
by running an implementation of each algorithm with the
GPU synchronization approach, but with the synchronization
function __gpu_sync() removed. For the implementation
with the CPU synchronization, we assume its computation
time is the same as others because the memory access and the
computation is the same as that of the GPU implementations.
With the above method, time of each synchronization method
in the three algorithms is shown in Figure 11. Similar as
Figure 10, we show the number of blocks in the kernel from
9 to 30. Figures 11(a), 11(b), and 11(c) are for FFT, SWat,
and bitonic sort, respectively.

From Figure 11, in SWat and bitonic sort, synchronization
time matches the time consumption models as expressed in
Equations (6) and (7) in Section V. First, the CPU implicit
synchronization approach needs the most time while the GPU
lock-free synchronization consumes the least. Second, the
CPU implicit and the GPU lock-free synchronization has
good scalability, i.e., the synchronization time changes very
little with the change of the number of blocks in the kernel.
Third, for the GPU lock-based synchronization approach, the
synchronization time increases with the increase of the number
of blocks in the kernel. With 9 blocks in the kernel, time
needed for the GPU lock-based synchronization is close to
that of the GPU lock-free synchronization; When the number
of blocks increases to 30, synchronization time becomes much
larger than the GPU lock-free synchronization, but it is still
less than that of the CPU implicit synchronization. For FFT,
though the synchronization time variation is not regular versus
the number of blocks in the kernel, differences across different
synchronization approaches are the same as that in the other
two algorithms, i.e., as more blocks are configured in kernel,
more time is needed for the GPU lock-based synchronization
than the GPU lock-free synchronization. The reason for the
irregularity is caused by the property of the FFT computation,
which needs more investigation in the future.

D. Percentages of the Computation Time and the Synchroniza-
tion Time

Figure 12 shows the performance breakdown in percent-
age of the three algorithms when different synchronization
approaches are used. As we can see, percentage of the syn-
chronization time in FFT is much less than that in SWat and
bitonic sort. As a result, synchronization time changes have

(a) FFT

(b) SWat

(c) Bitonic sort

Fig. 11. Synchronization Time versus Number of Blocks in the Kernel

a less impact on the total kernel execution time compared
to SWat and bitonic sort. This is compatible with what are
shown in Figure 10, in which, for FFT, kernel execution
time is very close with different synchronization approaches
used; while the kernel execution time changes a lot in SWat
and bitonic sort; In addition, with the CPU implicit synchro-
nization approach used, synchronization time percentages are
about 50% and 60% in SWat and bitonic sort, respectively.
This indicates that inter-block communication time occupies
a large part of the total execution time in some algorithms.
Thus, decreasing the synchronization time can improve the
performance greatly in some algorithms; Finally, with the
GPU lock-free synchronization approach, percentage of the
synchronization time decreases from 49.2% to 31.1% in SWat
and from 59.6% to 32.7% in bitonic sort, respectively, but
that of FFT is much less, from 17.8% to 8.0%. The reason is
similar, i.e., synchronization time decrease does not impact the
total kernel execution time as much as the other two algorithms
because its percentage in the total kernel execution time is



Fig. 12. Percentages of Computation Time and Synchronization Time

small.

E. Costs of Guaranteeing Inter-Block Communication Cor-
rectness

As described in [29], the barrier function cannot guarantee
that inter-block communication is correct unless a memory
consistency model is assumed. To remedy this problem,
CUDA 2.2 provides a new function __threadfence().
This function can “guarantee all writes to shared or global
memory visible to other threads [22]”. If it is integrated in
our proposed GPU barrier synchronization functions, then all
writes to shared memory or global memory will be read
correctly after the barrier synchronization function. How-
ever, as we can expect, overhead will be caused when
__threadfence() is called. Figure 13 shows the ker-
nel execution time versus the number of blocks in kernels
with __threadfence() called in our barrier synchroniza-
tion function __gpu_sync(), where Figures 13(a), 13(b),
and 13(c) are for FFT, SWat, and bitonic sort, respectively.

As we can see, a lot of overhead is caused by
__threadfence(). The more block are configured in
kernels, the more overhead is caused, which can even exceed
the kernel execution time with the CPU implicit synchro-
nization. Consider the GPU lock-free synchronization, from
Figure 13(a), for FFT, when the number of blocks in the kernel
is larger than 14, more time is needed to execute the kernel
with the GPU lock-free synchronization. The threshold is 18
and 12 for SWat and bitonic sort, respectively. From these
results, though the barrier can be implemented in software ef-
ficiently, the cost of guaranteeing correctness with the function
__threadfence() is very high, which means guarantee-
ing writes to shared memory or global memory to be read
correctly via __threadfence() is not an efficient way. It
is worth noting that even without __threadfence() called
in our barrier functions, all program results are correct with
thousands of runs. Thus, the likelyhood of incorrect inter-
block data communication is effectively 0, which arguably
obfuscates the needed for __threadfence() on the GTX
280. However, this is not expected on the next generation of
NVIDIA GPU “Fermi”, on which, with a more efficient imple-
mentation of __threadfence() and a different architec-
ture, it is needed for correct inter-block data communication.

(a) FFT

(b) SWat

(c) Bitonic sort

Fig. 13. Kernel Execution Time versus Number of Blocks in the Kernel with
__threadfence() Called

VIII. CONCLUSION

In the current GPU architecture, inter-block communication
on GPUs requires a barrier synchronization to exist. Till now,
most previous GPU performance optimization studies focus
on optimizing the computation, and very few techniques were
proposed to reduce inter-block communication time, which is
dominated by barrier synchronization time. To systematically
solve this problem, we first propose a performance model for
kernel execution on a GPU. It partitions kernel execution time
into three components: kernel launch time, computation time,
and synchronization time. This model can help to design and
evaluate various synchronization approaches.

Second, we propose two synchronization approaches: GPU
lock-based synchronization and GPU lock-free synchroniza-
tion. The GPU lock-based synchronization uses a mutex
variable and CUDA atomic operations, while the lock-free
approach uses two arrays of synchronization variables and
does not rely on the costly atomic operations. For each of these



methods, we quantify its efficacy with the aforementioned
performance model.

We evaluate the two GPU synchronization approaches with
a micro-benchmark and three important algorithms. From our
experiment results, with our proposed GPU synchronization
approaches, performance improvements are obtained in all
the algorithms compared to state of the art CPU barrier
synchronization, and the time needed for each GPU syn-
chronization approach matches the time consumption model
well. In addition, based on the kernel execution time model,
we partition the kernel execution time into the computation
time and the synchronization time for the three algorithms.
In SWat and bitonic sort, the synchronization time takes
more than half of the total execution time. This demon-
strates that for data-parallel algorithms with considerable inter-
block communication, decreasing synchronization time is as
important as optimizing computation. Finally, we show the
performance degradation caused by __threadfence() to
guarantee inter-block communication correctness. From the
results, though barrier synchronization can be implemented
via software efficiently, guaranteeing data writes to shared
memory and global memory visible to all other threads via
__threadfence() is inefficient. As a result, better ap-
proaches such as efficient hardware barrier implementation or
memory flush functions are needed to support efficient and
correct inter-block communication on a GPU.

As for future work, we will further investigate the reasons
for the irregularity of the FFT’s synchronization time versus
the number of blocks in the kernel. Second, we will propose a
general model to characterize algorithms’ parallelism proper-
ties, based on which, better performance can be obtained for
their parallelization on multi- and many-core architectures.
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