
On the Greenness of In-Situ and Post-Processing
Visualization Pipelines

Vignesh Adhinarayanan∗, Wu-chun Feng∗, Jonathan Woodring†, David Rogers†, James Ahrens†
∗Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24060

†Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, New Mexico 87545
{avignesh, wfeng}@vt.edu, {woodring, dhr, ahrens}@lanl.gov

Abstract—Post-processing visualization pipelines are tradi-
tionally used to gain insight from simulation data. However,
changes to the system architecture for high-performance com-
puting (HPC), dictated by the exascale goal, have limited the
applicability of post-processing visualization. As an alternative,
in-situ pipelines are proposed in order to enhance the knowl-
edge discovery process via “real-time” visualization. Quantitative
studies have already shown how in-situ visualization can improve
performance and reduce storage needs at the cost of scientific
exploration capabilities. However, to fully understand the trade-
off space, a head-to-head comparison of power and energy
(between the two types of visualization pipelines) is necessary.

Thus, in this work, we study the greenness (i.e., power, energy,
and energy efficiency) of the in-situ and the post-processing
visualization pipelines, using a proxy heat-transfer simulation
as an example. For a realistic I/O load, the in-situ pipeline
consumes 43% less energy than the post-processing pipeline.
Contrary to expectations, our findings also show that only 9%
of the total energy is saved by reducing off-chip data movement,
while the rest of the savings comes from reducing the system idle
time. This suggests an alternative set of optimization techniques
for reducing the power consumption of the traditional post-
processing pipeline.

I. INTRODUCTION

The computational demand of high-performance computing
(HPC) applications has brought major changes to the HPC
system architecture. As a result, it is now possible to run
simulations faster and get more accurate results. But, the recent
changes to the HPC systems solve just one part of the problem
- getting high quality data from simulations. What is arguably
more important, is the insight behind the data.

Scientists visualize the simulation data to understand a
complex physical phenomenon and solve real-world problems.
A typical visualization pipeline involves simulating a phe-
nomenon, and writing the simulation data to a disk. After the
simulation is complete, the data is sent to a rendering farm,
where it is visualized and interpreted to draw meaningful con-
clusions. This kind of pipeline, known as the post-processing
visualization pipeline, has been popular for a long time.

However, the changes dictated by the exascale goal has
affected the traditional post-processing visualization pipelines.
Faster processors have encouraged scientists to perform larger
simulations, producing more simulation data, which cannot
be handled by the slower I/O. Also, off-chip data movement
is now estimated to consume nearly hundred times as much
energy as on-chip movement [1]. This trend is concerning,

particularly for exascale simulations, as the U.S. Department
of Energy’s (DOE) goal is to support exascale systems un-
der a maximum power budget of 20 MW [2]. These trends,
combined, has resulted in a paradigm shift, away from post-
processing visualization.

To continue knowledge discovery via visualization, two ma-
jor challenges must to be addressed. First, the I/O bottleneck,
which affects the performance, should be overcome. Next,
the energy consumption of visualization pipelines should be
limited. In order to solve both these problems, researchers have
advocated in-situ data analytics and visualization, where the
data is processed/visualized alongside the simulation [3]. This
reduces the total amount of off-chip transfers, thereby avoiding
the I/O bottleneck and reducing the energy consumption. On
the flip side, scientists lose their ability to perform exploratory
analysis when they use in-situ techniques.

Researchers have studied several in-situ pipelines and have
found them to be better than post-processing pipelines, in
terms of storage requirements and performance. However,
to the best of our knowledge, there exists no studies that
quantitatively compares the power and energy consumption of
the two types of visualization pipelines. Improvements in per-
formance and reduction in storage requirements are assumed
to automatically translate into energy and power savings. We
seek to determine the magnitude of these savings, to fully
understand the advantages and the disadvantages of both the
pipelines. Our major contributions include the following:

• We provide a subsystem-level characterization of instan-
taneous power for in-situ and post-processing pipelines
using a proxy heat transfer application configured for
different I/O loads.

• We provide a direct comparison of the two pipelines,
in terms of the following metrics: performance, power,
energy consumption, and energy efficiency.

• We provide a breakdown of the energy savings from
the in-situ approach. We estimate the energy saved by
reducing data movement and by reducing idle time.

• We present a hypothetical case where an alternative set
of techniques applied to the post-processing pipeline will
consume nearly the same amount of energy as the in-situ
pipeline.

Our major findings are presented below. Please note that our
findings are based on the study of a single proxy application

11th workshop on High-Performance, Power-Aware Computing (HPPAC), Hyderabad, India



in a limited setting. The application was run on a single node,
using a traditional hard disk, local to the node.

• Energy saved by adopting in-situ visualization is as high
as 43% for a proxy application configured for a realistic
I/O load.

• As much as 91% of the energy is saved by minimizing
the time spent idling, while only 9% of the energy is
saved by actually avoiding off-chip accesses.

• Using fio benchmark, we show cases where the I/O
bottleneck and the associated power overhead could be
overcome even in the post-processing pipelines, using
techniques such as software-directed data reorganization.

While the scope of this study is limited, it will be expanded
to real applications running on state-of-the art HPC systems
in the future.

The rest of the paper is organized as follows. Section II
covers background on visualization pipelines, the target appli-
cation, and energy measurement. Related work is presented in
Section III. The experimental setup is described in Section IV.
The results are discussed in Section V. We present our future
work and conclude in Section VI.

II. BACKGROUND

In this section, we explain our proxy application and the
different pipelines studied. We also provide some background
on the power monitoring capability of our target system.

A. Proxy Heat-Transfer Simulation

Our proxy application performs a heat transfer simulation
based on the finite-element method, similar to the methods
described by Reddy and Gartling [4]. This method solves a
partial-differential equation by performing a series of stencil
computations. The application operates on a three-dimensional
grid. In each timestep, the temperature of every element in the
grid is computed from its six face-centered cubic neighbors.
At the end of each timestep, either the raw data or the image
representation of the data can be stored on the disk. The image
representation of the z-plane at timesteps 2000 and 10000
is shown in Figure 1. The color of each point in the grid
represents its temperature.

The size of the grid (in MB), is given as input to the
application. This size also represents the amount of data that is
written at the end of each timestep. The application creates an
NxNxN grid corresponding to the input size and simulates the
transfer of heat within the grid. The user can also control the
size of the chunks in which data is written to and read from
the disk. To control the time spent in simulation and disk I/O,
the user can also specify how often the simulation data is read
and written.

The application supports the following modes
• heat: Performs a heat transfer simulation based on stencil

computations.
• nnread: Performs disk read operations. The read requests

go to sequential locations.
• nnwrite: Performs disk write operations. The write re-

quests go to sequential locations.

Fig. 1: Heatmap visualization of the z-plane at timesteps 2000
and 10000

• heat+nnwrite: Performs heat and nnwrite in succession.
This corresponds to the first phase of a post-processing
pipeline.

• nnread+image: Performs nnread and visualization in
succession. This corresponds to the second phase of a
post-processing pipeline.

• heat+image: Performs heat and visualization in succes-
sion. This corresponds to an in-situ pipeline.

B. Visualization Pipelines

In an in-situ pipeline, the simulation and the visualization
of the simulated data are co-located in the same machine,
running side by side. In a post-processing pipeline, data is
visualized after the simulation, either in the same machine or
in a separate rendering machine. This involves one or more
off-chip transfers, either to the disk, or to the network, or
both. Within the context of this definition, several pipelines
are possible. In this section, we explain what we mean by a
post-processing and an in-situ pipeline.

Figure 2a shows the post-processing pipeline. We simulate
heat transfer in a 3-D grid and write the raw data to the disk
at the end of every iteration. After the simulation is complete,
we read the entire data back from the disk, create image
representations of the grid, and write the images back to the
disk. The images may later be used to compose a movie clip.

Figure 2b shows the in-situ pipeline. We start with the
simulation. At the end of each timestep, we generate an image
which is a reduced representation of the raw data and write
the generated image to the disk.

11th workshop on High-Performance, Power-Aware Computing (HPPAC), Hyderabad, India



Disk Read

Visualization

Disk Write

Simulation

Disk Write
Simulation

Visualization

Disk Write

(a) Post-processing pipeline

Disk Read

Visualization

Disk Write

Simulation

Disk Write
Simulation

Visualization

Disk Write

(b) In-situ pipeline

Fig. 2: Different types of visualization pipelines

C. Power Monitoring

In our experiments, we collect the power consumed by the
sub-components of the CPU through Intel’s Running Average
Power Limit (RAPL) interface [5]. RAPL was introduced in
Intel Sandy Bridge systems and provides power-limiting and
energy-monitoring capabilities. We make use of the energy-
monitoring feature to obtain a component’s power profile. The
underlying mechanism is described as follows. The RAPL
interface reads values from model-specific registers (MSR)
that are available in the hardware to monitor the system
activities of three components, namely PP0 (core), package
(processor), and DRAM (memory). Using a pre-validated
model, RAPL estimates the energy consumed by the three
components. The average power consumption for any time
slice is then computed from the corresponding energy esti-
mates. The estimated power values closely track true power
consumption, with an average error rate of less than 1% [5].
Of particular interest to us, is the power consumed by the
package and the DRAM.

III. RELATED WORK

In-situ visualization pipelines have been explored for a long
time. Originally conceived as a way to enable scientists to
monitor their simulations [6], in-situ visualization is now being
adopted to overcome performance bottlenecks associated with
large I/O operations. Numerous in-situ algorithms [7], [8],
applications [9]–[14], and frameworks [15], [16] have been
developed.

Tu et al. couple the simulation and visualization components
of a finite-element simulation of earthquake to overcome
scalability bottlenecks of traditional approaches [17]. Yu et
al. present an in-situ approach for jet-lifted combustion sim-
ulation [9]. Kariamadi et al. present an in-situ visualization
pipeline for electron fluid and kinetic ions simulations in

order to study the effect of solar wind on planetary bod-
ies [11]. Ahrens et al. present an image-based approach for
interactive in-situ visualization and apply it to MPAS-Ocean,
an unstructured-mesh simulation of oceans [12]. Many other
applications have their own in-situ implementations [13], [14].

With visualization-based approaches proving to be popular
for knowledge discovery, a number of visualization frame-
works such as ParaView [15], VisIT [16], DataSpaces [18],
and ADIOS [19] have been developed to quickly build in-
situ and post-processing visualization pipelines. Bennett et al.
combine in-situ and in-transit techniques using DataSpaces
and ADIOS frameworks to analyze data from S3D, a massively
parallel turbulent combustion simulation [10]. Biddiscombe et
al. use ParaView to build and evaluate their application [20].
All these studies have shown that in-situ approaches have
better I/O characteristics and performance. Techniques such
as data sampling [21], [22] and data triage [23] have been
developed to further improve the performance.

The metrics of interest in all the above studies are per-
formance/speed and storage size. Studies characterizing the
power and energy behavior of in-situ pipelines are limited.
Recently, Gamell et al. looked at the performance and energy
trade-offs of an in-situ combustion simulation in a large-
scale system [24]. Haldeman et al. explored the energy-
performance-quality tradeoffs of different data movement
strategies applicable to in-situ pipelines [25]. Gamell et al.
evaluated the energy and performance behaviors of in-situ
and in-transit pipelines on an NVRAM-based deep memory
hierarchy systems [26]. While the above works evaluate power
and energy consumption of in-situ pipelines, none of them
provide a direct comparison with post-processing pipelines to
help truly understand the energy, performance, and quality
trade-offs. In this work, we provide a direct comparison of
in-situ and post-processing pipelines in terms of performance,
power, energy, and energy efficiency using a proxy heat-
transfer simulation as an example.

IV. EXPERIMENTAL SETUP

In this section, we describe the hardware platform, the setup
for power monitoring, and the different configurations of the
application used in the study.

A. Hardware Platform

The system under test contains a dual-socket Intel Sandy
Bridge, where each socket contains an 8-core Intel Xeon E5-
2665 CPU (for a total of 16 cores in the node). It has 64 GB
of DDR3 memory, and a Seagate 500GB 7200rpm HDD. This
system runs Ubuntu 12.04 operating system with GNU/Linux
3.2.0-23 kernel. Other details of the hardware platform is given
in Table I.

B. Setup for Power Monitoring

The power measurements come from two different sources,
as shown in Figure 3. The system under test is connected to a
Wattsup Pro power meter which is connected to a power outlet.
The power meter provides system-wide power measurements

11th workshop on High-Performance, Power-Aware Computing (HPPAC), Hyderabad, India



TABLE I: Hardware specification

H/W Type H/W Detail

CPU 2x Intel Xeon E5-2665

CPU frequency 2.4 GHz

Last-level cache 20 MB

Memory 4x 16GB DDR3-1333

Memory size 64 GB

Hard disk Seagate 7200rpm disk

Storage size 500GB

Disk bandwidth 6.0 Gbps

System under test

Subsystem-level 
monitoring via RAPL

Monitoring 
system

WattsUp
power meter

To power outlet

Fig. 3: Power monitoring setup

at a frequency of 1 Hz, i.e., one reading per second. A different
monitoring system collects the power measurements through a
USB interface and writes them to its local disk. This approach
minimizes the error in the application’s power profile as there
is no interference from a monitoring process and additional
data writes to the disk.

Simultaneously, the Intel Sandy Bridge CPU provides power
measurements for the components within the CPU via the
RAPL interface. This measurement cannot be monitored by
a different machine. To reduce the interference, we set the
monitoring resolution to 1 Hz even though RAPL provides
measurements at a frequency of over 1 KHz. At this low
resolution, the power consumption increases by 0.2 W on an
average, which is negligible. We collect the processor’s power
consumption (package power) and DRAM power consumption
using this interface. Power consumption of the rest of the
system, which includes the hard disk, network, motherboard,
and fans, is estimated by subtracting the processor power and
the DRAM power from the full-system power obtained using
the Wattsup Pro meter.

C. Application Configuration

Three different configurations of the proxy application were
used in our study. In all three cases, the application is run for
fifty iterations or timesteps. The grid size and the chunk size
were fixed at 128 KB for all the cases. For case study #1, I/O
operations and visualization is performed in every iteration.
For case study #2, it is done every alternate iteration, and
for case study #3, every eighth iteration. This experiment is
done to show the impact of I/O time on energy savings. In all

these cases, we perform a sync operation and drop the caches
between phases. This ensures that the data does not get cached
in memory and is actually written to the disk.

Case.Study.1 Case.Study.2 Case.Study.3

0%

25%

50%

75%

100%

P
er

ce
nt

ag
e 

tim
e

Stage
Read
Simulation
Visualization
Write

Fig. 4: Percentage of execution time spent in simulation, disk
writes, disk reads, and visualization for the three cases

The break up of execution time for the three cases is
shown in Figure 4. The percentage of execution time spent
in simulation, write, read, visualization stages are 33%, 30%,
27%, and 10%, respectively, for case study #1. These values
are not very different from some real applications where over
70% of the total time is spent in I/O operations [27]. The
corresponding values for case study #2 are 50%, 22%, 21%,
and 7%; For case study #3, the values are 80%, 9%, 8%, and
3%.

V. RESULTS AND DISCUSSION

In this section, we first present the power profile of the
three different instances of the in-situ and the post-processing
pipelines for the proxy heat-transfer simulation. Then, we
characterize and compare the two pipelines in terms of the
following metrics: performance, power, energy, and energy
efficiency. Next, we provide a breakdown of the energy savings
and discuss its implications on the power optimization of
visualization pipelines.

A. Power Profiles

Figures 5a, 5c, 5e and Figures 5b, 5d, 5f show the power
profile of post-processing and in-situ pipelines, respectively,
for the three different application configurations presented in
Section IV-C. These graphs present the instantaneous power
consumed by the processor, the memory, and the full system
over time. Power profiles for the post-processing pipeline,
shown in Figures 5a, 5c, 5e, indicate the presence of distinct
power phases in the application. The first major phase, in
which the simulation is performed and the data is written to
the disk, consumes about 143 W of power on an average. The
second major phase, where the simulation data is read back
from the disk and visualized, consumes about 121 W of power
on an average. Since the average power consumed by the reads
and the writes is nearly the same as shown in Figure 6, we
can infer that the simulation phase consumes 22 W more power

11th workshop on High-Performance, Power-Aware Computing (HPPAC), Hyderabad, India



50

100

150

0 100 200 300
Time (s)

P
ow

er
 (

W
) System

DRAM

Processor

(a) Power profile of post-processing pipeline for case study #1

50

100

150

0 100 200 300
Time (s)

P
ow

er
 (

W
) System

DRAM

Processor

(b) Power profile of in-situ pipeline for case study #1

50

100

150

0 50 100 150 200 250
Time (s)

P
ow

er
 (

W
) System

DRAM

Processor

(c) Power profile of post-processing pipeline for case study #2

50

100

0 50 100 150 200 250
Time (s)

P
ow

er
 (

W
) System

DRAM

Processor

(d) Power profile of in-situ pipeline for case study #2

50

100

150

0 50 100 150 200
Time (s)

P
ow

er
 (

W
) System

DRAM

Processor

(e) Power profile of post-processing pipeline for case study #3

50

100

0 50 100 150 200
Time (s)

P
ow

er
 (

W
) System

DRAM

Processor

(f) Power profile of in-situ pipeline for case study #3

Fig. 5: Power consumed by processor, memory, and full system over time for post-processing and in-situ pipelines

than the visualization phase. We also observe that there are no
distinct power phases for the in-situ pipeline.

Another observation from Figure 5 is that power consumed
by the memory subsystem is significantly lower than the
processor. Since the maximum power consumed by the disk
is also low (about 15 W), we expect that the energy overhead
from off-die data movement is not high. We quantitatively
demonstrate this in another set of experiments.

Performance, power, energy, and energy-efficiency values
are derived from the power profiles to compare the two types
of visualization pipeline.

B. Comparison of Pipelines

Figure 7 shows the execution time of the post-processing
and the in-situ pipelines for three different problem sizes. The
execution time of the in-situ pipelines were 92%, 52%, and
26% lower than the post-processing pipelines for the three
problem sizes, respectively.

Figure 8 and Figure 9 shows the average power and the
peak power consumption for the post-processing and in-situ
pipelines. There is no significant difference in the peak power,

nnwrite

nnread

50

70

90

110

50

70

90

110

0 10 20 30 40 50
Time (s)

P
ow

er
 (

W
)

nnwrite

nnread

Fig. 6: Power profile of nnread and nnwrite stages

which is an important metric for power-capped systems. The
in-situ pipelines consumed 8%, 5%, and 3% more power on
an average.

11th workshop on High-Performance, Power-Aware Computing (HPPAC), Hyderabad, India



Case Study 1 Case Study 2 Case Study 3

0

50

100

150

200

250

In−situ Traditional In−situ Traditional In−situ Traditional

E
xe

cu
tio

n 
tim

e 
(s

)

Fig. 7: Execution time of post-processing and in-situ pipelines

Case Study 1 Case Study 2 Case Study 3

125

130

135

140

145

150

In−situ Traditional In−situ Traditional In−situ Traditional

A
ve

ra
ge

 p
ow

er
 (

W
)

Fig. 8: Average power of post-processing and in-situ pipelines

Energy consumption, which is the integral of instantaneous
power over time, is presented in Figure 10. Even though the
average power is higher for in-situ pipeline, its energy con-
sumption is 43%, 30%, and 18% lower than post-processing
pipeline. This is because of the significantly lower execution
time. The improvement in energy-efficiency from adapting an
in-situ pipeline varies from 22% to 72% depending on the time
spent in I/O operations (Figure 11).

Overall, the in-situ pipelines are greener than post-
processing pipelines. However, the advantages in energy ef-
ficiency tapers out as the time spent in I/O lowers. Since
many real-world simulation-visualization applications spend
a substantial amount of time doing disk I/O [27]–[29], their
energy-efficiency improvement will be significant if they adapt
in-situ pipelines.

C. Energy Savings Breakdown

Figure 10 showed that in-situ pipelines saves as much
as 43% of the total energy consumed by post-processing
pipeline. In this section, we show the breakdown in energy
savings, showing how much energy was saved by (i) reducing
data transfers, and (ii) reducing idle time by reducing data
transfers. In the first case, the energy savings come from the
dynamic component where the power is consumed due to data

Case Study 1 Case Study 2 Case Study 3

125

130

135

140

145

150

In−situ Traditional In−situ Traditional In−situ Traditional

P
ea

k 
po

w
er

 (
W

)

Fig. 9: Peak power of post-processing and in-situ pipelines

Case Study 1 Case Study 2 Case Study 3

0

10000

20000

30000

In−situ Traditional In−situ Traditional In−situ Traditional

E
ne

rg
y 

(J
)

Fig. 10: Energy consumption of post-processing and in-situ
pipelines

accesses. In the second case, the savings come from reducing
the static component of energy. It is important to make this
distinction because the power optimization techniques used
for the two situations will be vastly different. If the source of
energy savings is significant for the dynamic component, data
sampling technique is preferred, which may result in loss of
useful information. If the energy savings mostly come from the
static component, other techniques such as frequency scaling
and data rearrangement may help.

To estimate the energy savings breakdown, we first obtain
the power profile for nnread and nnwrite stages of our proxy
application, which is shown in Figure 6. From the profile, we
extract relevant metrics, namely average total power consump-
tion, and average dynamic power consumption for the two
stages. This information is shown in Table II. The dynamic en-
ergy savings is calculated by multiplying the average dynamic

TABLE II: Properties of nnread and nnwrite stages

Metric nnread nnwrite

Avg. Power (Total) 115.1 114.8

Avg. Power (Dynamic) 10.3 10.0

11th workshop on High-Performance, Power-Aware Computing (HPPAC), Hyderabad, India



TABLE III: Performance, power, and energy consumption for the fio tests

Metric Sequential Read Random Read Sequential Write Random Write

Execution time (s) 35.9 2230.0 27.0 31.0

Full-system power (W) 118 107 115.4 117.9

Disk dynamic power (W) 13.5 2.5 10.9 13.4

Disk dynamic energy (KJ) 0.4 5.5 2.9 0.4

Full-system energy (KJ) 4.2 238.6 3.1 3.6

Case Study 1 Case Study 2 Case Study 3

0.00

0.25

0.50

0.75

1.00

In−situ Traditional In−situ Traditional In−situ Traditional

E
ne

rg
y 

ef
fic

ie
nc

y 
(n

or
m

al
iz

ed
)

Fig. 11: Energy efficiency of post-processing and in-situ
pipelines

power shown in Table II with the corresponding time spent,
i.e. the difference in execution time between in-situ and post-
processing pipelines shown in Figure 7. The static savings are
computed by subtracting the dynamic savings computed from
the total energy savings shown in Figure 10. For case study
#1, the energy saved by avoiding idling (from static sources)
is 12.8 KJ, and the energy saved by reducing data accesses is
1.2 KJ. That is, as much as 91% of the energy is saved by
avoiding system idling.

D. Discussion

Our test application performs I/O operations sequentially.
This is not always the case in real applications, where I/O
operations may occur in a random fashion. To account for
this, we consider the sequential and random tests from the fio
disk benchmark. We read and write 4 GB of data to sequential
and random locations in the disk using this benchmark. The
power, energy, and execution time for these cases are shown in
Table III. For an application exhibiting random I/O behavior,
we could save 242.2 KJ (238.6 KJ+3.6 KJ) of energy by adopt-
ing in-situ visualization. However, we will lose the capability
for exploratory analysis. But, if we were to adopt data-
rearrangement techniques [30], [31] on the post-processing
pipeline, we will lose out only 7.3 KJ (4.2 KJ+3.1 KJ) of
energy, instead of 242.2 KJ, while at the same time retaining
all of the exploratory analysis capabilities. This presents many
interesting possibilities for reducing the power consumption of
the traditional post-processing pipelines without having to lose
out on exploratory analysis.

VI. CONCLUSION AND FUTURE WORK

In this study, we found that the energy saved by adopting
in-situ visualization is as high as 43% on a proxy application
configured for realistic I/O load. We also found that as much
as 91% of the energy savings comes from reducing the system
idle time. Comparatively, only 9% of the energy is saved by
reducing off-chip accesses. Using fio benchmark, we showed
cases where the I/O bottleneck and the associated power over-
head could be overcome even in the post-processing pipelines
when techniques such as software-directed data reorganization
is used.

A. Future Work

One of the major limitations of this work is that our tests
are based on only one application, running on a single node,
using traditional hard disks and file system. In future, we plan
to work on the following:

• Evaluation of real-world applications such as MPAS [32]
and xRAGE [33].

• Evaluation on a multi-node system to study the effect of
network I/O in addition to disk I/O.

• Evaluation on systems using RAID disks, solid-state
drives, and other flash-based devices such as NVRAM.

• Evaluation on multi-node systems running parallel file
systems to understand the impact of file system on energy
consumption.

• We would also like to develop a runtime system that
makes use of our characterization studies. Such work
would entail the development of power models that
estimates the hard disk power based on the number of
disk accesses, size of each access, and the corresponding
access pattern. Using this model, the runtime will decide
the power optimization technique to be used.

ACKNOWLEDGMENT

This work was supported in part by a grant from the U.S.
Department of Energy (DOE) Office of Advanced Scientific
Computing Research (ASCR) via DE-SC0012637 and by
infrastructure provided by Supermicro. This paper is a Los
Alamos Unclassified Release LA-UR-15-21414.

REFERENCES

[1] S. R. Sachs, K. Yelick et al., “Exascale Programming Challenges,” 2011
Workshop on Exascale Programming Challenges, 2011.

[2] R. Lucas et al., “Top Ten Exascale Research Challenges,” DOE ASCAC
Subcommitte Report, February, 2014.

11th workshop on High-Performance, Power-Aware Computing (HPPAC), Hyderabad, India



[3] S. Ahern, A. Shoshani, K.-L. Ma, A. Choudhary, T. Critchlow, S. Klasky,
V. Pascucci, J. Ahrens, W. Bethel, H. Childs et al., “Scientific Discovery
at the Exascale: Report from the DOE ASCR 2011 Workshop on
Exascale Data Management, Analysis, and Visualization,” 2011.

[4] J. N. Reddy and D. K. Gartling, The Finite Element Method in Heat
Transfer and Fluid Dynamics. CRC press, 2010.

[5] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “RAPL:
Memory Power Estimation and Capping,” in Proceedings of the 2010
ACM/IEEE International Symposium on Low-Power Electronics and
Design (ISLPED), Aug 2010, pp. 189–194.

[6] L. Kwan-Ma, “Runtime Volume Visualization for Parallel CFD,” Tech.
Rep., 1995.

[7] H. Childs, M. Duchaineau, and K.-L. Ma, “A Scalable, Hybrid Scheme
for Volume Rendering Massive Data Sets,” in Proceedings of the
6th Eurographics Conference on Parallel Graphics and Visualization
(EGPGV). Aire-la-Ville, Switzerland, Switzerland: Eurographics As-
sociation, 2006, pp. 153–161.

[8] H. Yu, C. Wang, and K.-L. Ma, “Massively parallel volume rendering
using 2-3 swap image compositing,” in International Conference on
2008 High Performance Computing, Networking, Storage and Analysis
(SC), Nov 2008, pp. 1–11.

[9] H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K.-L. Ma, “In Situ
Visualization for Large-Scale Combustion Simulations,” IEEE Computer
Graphics Applications, vol. 30, no. 3, pp. 45–57, May 2010.

[10] J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay, D. Thompson,
H. Yu, F. Zhang, and J. Chen, “Combining In-situ and In-transit
Processing to Enable Extreme-scale Scientific Analysis,” in Proceedings
of the 2012 International Conference on High Performance Computing,
Networking, Storage and Analysis (SC). Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012, pp. 49:1–49:9.

[11] H. Karimabadi, B. Loring, P. O’Leary, A. Majumdar, M. Tatineni, and
B. Geveci, “In-situ Visualization for Global Hybrid Simulations,” in Pro-
ceedings of the 2013 Conference on Extreme Science and Engineering
Discovery Environment: Gateway to Discovery (XSEDE). New York,
NY, USA: ACM, 2013, pp. 57:1–57:8.

[12] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, and
M. Petersen, “An Image-based Approach to Extreme Scale in Situ
Visualization and Analysis,” in Proceedings of the 2014 International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC). Piscataway, NJ, USA: IEEE Press, 2014, pp. 424–434.

[13] V. Vishwanath, M. Hereld, and M. Papka, “Toward Simulation-time
Data Analysis and I/O Acceleration on Leadership-class Systems,” in
Proceedings of the 2011 IEEE Symposium on Large Data Analysis and
Visualization (LDAV), Oct 2011, pp. 9–14.

[14] F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and
H. Abbasi, “Enabling In-situ Execution of Coupled Scientific Workflow
on Multi-core Platform,” in Proceedings of the 26th IEEE International
Parallel Distributed Processing Symposium (IPDPS), May 2012, pp.
1352–1363.

[15] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion, B. Geveci,
M. Rasquin, and K. Jansen, “The ParaView Coprocessing Library: A
Scalable, General Purpose In Situ Visualization Library,” in Proceedings
of the 2011 IEEE Symposium on Large Data Analysis and Visualization
(LDAV), Oct 2011, pp. 89–96.

[16] B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel In Situ Coupling
of Simulation with a Fully Featured Visualization System,” in Proceed-
ings of the 11th Eurographics Conference on Parallel Graphics and
Visualization (EGPGV), 2011, pp. 101–109.

[17] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak, O. Ghattas, K.-L. Ma,
and D. O’Hallaron, “From Mesh Generation to Scientific Visualization:
An End-to-End Approach to Parallel Supercomputing,” in Proceedings
of the 2006 International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), Nov 2006, pp. 12–12.

[18] M. Franklin, A. Halevy, and D. Maier, “From Databases to Dataspaces:

A New Abstraction for Information Management,” ACM SIGMOD
Record, vol. 34, no. 4, pp. 27–33, 2005.

[19] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin, “Flex-
ible IO and Integration for Scientific Codes Through the Adaptable IO
System (ADIOS),” in Proceedings of the 6th International Workshop on
Challenges of Large Applications in Distributed Environments. ACM,
2008, pp. 15–24.

[20] J. Biddiscombe, J. Soumagne, G. Oger, D. Guibert, and J.-G. Piccinali,
“Parallel Computational Steering for HPC Applications Using HDF5
Files in Distributed Shared Memory,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 18, no. 6, pp. 852–864, 2012.

[21] J. Woodring, J. Ahrens, J. Figg, J. Wendelberger, S. Habib, and
K. Heitmann, “In-situ Sampling of a Large-scale Particle Simulation
for Interactive Visualization and Analysis,” in Proceedings of the 13th
Eurographics / IEEE - VGTC Conference on Visualization (EuroVis).
Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 2011,
pp. 1151–1160.

[22] C. Wang, H. Yu, and K.-L. Ma, “Application-Driven Compression for
Visualizing Large-Scale Time-Varying Data,” IEEE Computer Graphics
and Applications, vol. 30, no. 1, pp. 59–69, 2010.

[23] ——, “Importance-Driven Time-Varying Data Visualization,” IEEE
Transactions on Visualization and Computer Graphics, vol. 14, no. 6,
pp. 1547–1554, Nov 2008.

[24] M. Gamell, I. Rodero, M. Parashar, J. C. Bennett, H. Kolla, J. Chen,
P.-T. Bremer, A. G. Landge, A. Gyulassy, P. McCormick, S. Pakin,
V. Pascucci, and S. Klasky, “Exploring Power Behaviors and Trade-
offs of In-situ Data Analytics,” in Proceedings of the 2013 International
Conference on High Performance Computing, Networking, Storage and
Analysis (SC). New York, NY, USA: ACM, 2013, pp. 77:1–77:12.

[25] G. Haldeman, I. Rodero, M. Parashar, S. Ramos, E. Z. Zhang, and
U. Kremer, “Exploring Energy-Performance-Quality Tradeoffs for Sci-
entific Workflows with In-situ Data Analyses,” Computer Science-
Research and Development, pp. 1–12, 2014.

[26] M. Gamell, I. Rodero, M. Parashar, and S. Poole, “Exploring energy and
performance behaviors of data-intensive scientific workflows on systems
with deep memory hierarchies,” in Proceedings of the 20th International
Conference on High Performance Computing (HiPC), Dec 2013, pp.
226–235.

[27] T. Peterka, H. Yu, R. Ross, and K.-L. Ma, “Parallel Volume Rendering
on the IBM Blue Gene/P,” in Proceedings of the 8th Eurographics
Conference on Parallel Graphics and Visualization (EGPGV). Aire-
la-Ville, Switzerland, Switzerland: Eurographics Association, 2008, pp.
73–80.

[28] R. B. Ross, T. Peterka, H.-W. Shen, Y. Hong, K.-L. Ma, H. Yu, and
K. Moreland, “Visualization and Parallel I/O at Extreme Scale,” Journal
of Physics: Conference Series, vol. 125, no. 1, p. 012099.

[29] T. Peterka, H. Yu, R. Ross, K.-L. Ma, and R. Latham, “End-to-End Study
of Parallel Volume Rendering on the IBM Blue Gene/P,” in Proceedings
of the 2009 International Conference on Parallel Processing (ICPP),
Sept 2009, pp. 566–573.

[30] Y. Zhang, J. Liu, and M. Kandemir, “Software-Directed Data Access
Scheduling for Reducing Disk Energy Consumption,” in Proceedings
of the 32nd IEEE International Conference on Distributed Computing
Systems (ICDCS), June 2012, pp. 596–605.

[31] S. W. Son and M. Kandemir, “Integrated Data Reorganization and Disk
Mapping for Reducing Disk Energy Consumption,” in Proceedings of
the 2007 IEEE International Symposium on Cluster Computing and the
Grid (CCGRID). IEEE, 2007, pp. 557–564.

[32] T. Ringler, M. Petersen, R. L. Higdon, D. Jacobsen, P. W. Jones, and
M. Maltrud, “A multi-resolution approach to global ocean modeling,”
Ocean Modelling, vol. 69, no. 0, pp. 211 – 232, 2013.

[33] M. Gittings, R. Weaver, M. Clover, T. Betlach, N. Byrne, R. Coker,
E. Dendy, R. Hueckstaedt, K. New, W. R. Oakes, D. Ranta, and
R. Stefan, “The RAGE radiation-hydrodynamic code,” Computational
Science and Discovery, vol. 1, no. 1, p. 015005, 2008.

11th workshop on High-Performance, Power-Aware Computing (HPPAC), Hyderabad, India


