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ABSTRACT
Over the past decade, accelerator-based supercomputers have grown

from 0% to 42% performance share on the TOP500. Ideally, GPU-

accelerated code on such systems should be “write once, run any-

where,” regardless of the GPU device (or for that matter, any parallel

device, e.g., CPU or FPGA). In practice, however, portability can be

significantly more limited due to the sheer volume of code imple-

mented in non-portable languages. For example, the tremendous

success of CUDA, as evidenced by the vast cornucopia of CUDA-

accelerated applications, makes it infeasible to manually rewrite all

these applications to achieve portability. Consequently, we achieve

portability by using our automated CUDA-to-OpenCL source-to-

source translator called CU2CL. To demonstrate the state of the

practice, we use CU2CL to automatically translate three medium-to-

large, CUDA-optimized codes to OpenCL, thus enabling the codes

to run on other GPU-accelerated systems (as well as CPU- or FPGA-

based systems). These automatically translated codes deliver per-

formance portability, including as much as three-fold performance

improvement, on a GPU device not supported by CUDA.
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1 INTRODUCTION
The desire for higher-fidelity simulation and data-driven scientific

computation has long been a key driver behind high-performance

computing (HPC). Such scientific computation was achieved via

parallelism at both the intra- and inter-node scales on relatively

homogeneous hardware, typically via MPI+OpenMP or MPI alone.

Rather than relying on an increasing number of heavyweight CPU
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cores, the HPC community began pairing these CPU cores with ad-

ditional accelerators (or coprocessors), onto which all or a portion of

key computations could be offloaded to take advantage of the perfor-

mance afforded by their radically different architectures. This ongo-

ing transition is evidenced by the increasing performance share that

accelerators have within the top performing supercomputers in the

world. BetweenNovember 2005 andNovember 2018, their combined

share grew from 0% to nearly 42% of all performance on the Top500

List [19]. Though many varieties of accelerator have been used and

new types are being developed, themost commonplace accelerator is

the graphics processing unit (GPU). Despite their prevalence, GPUs

are still non-trivial architectures to develop code for. Their dissim-

ilarity to traditional CPUs requires adapting to a newmental model

of parallel execution. The more significant obstacle, however, is the

lack of a common programming abstraction, language, and runtime.

The first general-purpose GPU (GPGPU) programming abstrac-

tion to gain significant traction was NVIDIA’s Compute Unified De-

vice Architecture (CUDA), which provides a single-source approach

to programming both host (CPU-side) and device (GPU-side) code

and coordinating between the two. A large body of CUDA-based ac-

celeratedsoftwarehasamassedsince its inception in2007, largelydue

to the convenient programming abstraction it provides. However, as

a vendor-owned languageand runtime specification,CUDAcode can

only execute on NVIDIA GPUs without the use of third-party tools.

Approximately two years after CUDA emerged, efforts to create

a vendor-neutral, standard approach to programming GPUs and

other parallel platforms culminated in the Open Compute Language

(OpenCL). OpenCL provides a similar programmingmodel to CUDA,

albeit with more cumbersome syntax (particularly on the host side);

but it also delivers functional portability (similar to C) across any

parallel computing device that provides a compliant implementation

of OpenCL.

CUDA and OpenCL have similar programming models, hence,

there is an opportunity to extend the reach of existing CUDA codes

to the additional platforms accessible via OpenCL. However, man-

ually translating the millions of lines of CUDA code already written

would be intractable, necessitating a huge developer effort with a

high risk of human-introduced errors. Therefore, we leverage our

automated CUDA-to-OpenCL source-to-source translator (CU2CL),

available at [1] and discussed further in §3, to explore the portability

of optimized CUDA codes to devices from different vendors. In par-

ticular, we compare the portability of three real-world accelerated

applications: (1) lid-driven cavity (LDC), a canonical problem in com-

putational fluid dynamics (CFD), (2) Fen Zi, a molecular dynamics

simulation, and (3)GEM, a molecular modeling application. All of
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these applications are discussed in greater detail in §4. We discuss

other approaches to portability and related work in §5.

Specifically, we make the following contributions:

• Demonstration of the practicality of running CUDA codes on

non-CUDA devices via static source-to-source translation

• Verification that the performance and correctness of trans-

lated CUDA applications is preserved on CUDA devices and

may even improve on non-CUDAGPUs

• An analysis of the functional and performance portability

of CUDA-optimized codes on non-GPU devices, specifically

Intel Xeon Phi (MIC), Intel CPU, and Altera FPGA

• Identification of optimizations to improve the performance

portability of codes targeting Intel Xeon Phi

2 BACKGROUND
For a given code sub-expression to beportable acrossGPU languages,

a semantically-equivalent expression must be composable in the tar-

get language. In general, CUDA and OpenCL possess this property,

i.e., device-side computations are expressed as kernel functions that
are invoked from the host (CPU); data is mapped or explicitly copied

to/from the device (GPU); and compute threads and memory are

organized into comparable hierarchies. The kernel languages are

similar, primarily differentiated by syntax, as shown in Table 1. This

similarity has led to several efforts to facilitate portability between

the two languages, as discussed in §5.

CUDA OpenCL Purpose

__global__ __kernel declare a host-invokable

device function

type * __global type * declare a kernel parameter

residing in the device

global memory space

blockIdx.{x,y,z} get_group_id({0,1,2}) query block/workgroup index

blockDim.{x,y,z} get_local_size({0,1,2}) query block/workgroup size

threadIdx.{x,y,z} get_local_id({0,1,2}) query in-block/in-group index

Table 1: OpenCL equivalents for a few syntactic elements.

CUDAevolves to include features as soon as they are supported by

new NVIDIA devices, whereas OpenCL’s feature set lags because of

the need for support acrossmultiple heterogeneous devices, ranging

from server to desktop to embedded. The OpenCL standard contin-

ues to evolve and the 2.x specifications include features that were

once exclusive to CUDA, such as a shared virtual memory address

space, device-side kernel enqueueing (i.e., dynamic parallelism), and

device-side C++ [14, 22]. Thus, CUDA codes have become increas-

ingly easier to translate as the OpenCL standard continues to evolve.

Performance is another concern when porting codes from CUDA

to OpenCL. Accelerators from different vendors released around the

same time are expected to achieve similar levels of performance. This

healthy competition is why having tools to enhance portability are

so important. Portability allows devices to be procured on the basis

of performance, power consumption, and cost rather than limiting

the decision to only language compatibility.

Initially, the optimizations needed to deliver performance porta-

bility differed between NVIDIA and AMDGPUs. What ran well on

one would often run poorly on the other. However, with the AMD

GPUhavingmoved fromaVLIWarchitecture to a scalar architecture

in the early 2010s, the optimizations needed for both are now very

similar [7].With the convergence inGPU architecture,we find it pos-

sible to achieve not only functional portability but also performance
portability across GPU vendors. Additionally, non-GPU accelera-

tor devices such as the Intel Xeon Phi and FPGAs have captured

a significant market and performance share as viable alternative

devices. In this paper, we explore the potential to achieve functional

and performance portability across these devices by leveraging the

CU2CL translator by Gardner et al. [12] to translate and evaluate

three scientific applications, as noted earlier: (1) lid-driven cavity

(LDC), a computational fluid dynamics (CFD) application, (2) FenZi, a
molecular dynamics application, and (3) GEM, amolecularmodeling

application.

3 CU2CL TRANSLATOR
The CU2CL tool [12] is an automated CUDA-to-OpenCL source-to-

source translator (CU2CL), enabling portability of CUDA software

to platforms lacking a CUDA implementation. We chose OpenCL

as the target language for the following reasons: (1) its broad-based

adoption and support, e.g., it currently supports not only GPUs but

also CPUs, Intel Xeon Phi, and even FPGAs, (2) a similar program-

ming model to CUDA, and (3) a “write-once, run-anywhere” open

standard. While CUDA and OpenCL are quite similar, the syntactic

changes required to decouple CUDA’s unified host and device source

files require the contextual information provided by a full compiler

framework. For this reason, CU2CL builds upon the open-source

Clang compiler,which in turn builds upon the LLVMcompiler infras-

tructure. Figure 1 provides a conceptual overview of the translation

pipeline and the core Clang components CU2CL utilizes.

Figure1:ArchitectureofCU2CLanditsrelationshiptoClang.

CU2CL performs AST-driven,1 string-based translation locally

and synthesizes global translations by sharing state between the

multiple ASTs that make up a full binary. AST-driven, string-based

translation means that CU2CL walks the AST generated by Clang

to identify critical source components and performs translations by

replacing the relevant text strings directly rather than by transform-

ing and flattening the AST. This provides the benefit of retaining

the full context in the generated OpenCL source files, preserving

preprocessor directives, commenting, and formatting. AST-driven

translations are performed in a depth-first manner, where leaf nodes

of the AST are first translated, and then any edited code is injected in

1
AST: abstract syntax tree
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Figure 2: AST-driven, syntax-directed translation with
CU2CL.

the wrapping statement. Figure 2 shows an example of this process

by translating a kernel-intrinsic function call in eight stages: (1) find

a CUDA construct to translate, (2) recognize the function arguments

as array parameters, (3) recognize that the indices into the arrays

are threadIdx structs ..., (4) ... with struct members as the indices,

(5) translate threadIdxmembers to the appropriate parameter for

OpenCL’s get_local_id function call, (6) translate the threadIdx
structs to get_local_id function calls, (7) pass the standard C array

references unchanged, and (8) translate the CUDA __powf function
to the OpenCL equivalent native_powr.

4 PORTABILITY THROUGHTRANSLATION
In this section, we demonstrate the efficacy of automated source-to-

source static translation via CU2CL to provide portability and per-

formance on non-CUDA devices via three scientific applications: (1)

lid-driven cavity (LDC), a canonical problem in computational fluid

dynamics (CFD), (2) Fen Zi, a molecular dynamics simulation, and

(3) GEM, a molecular modeling application, as shown in Figure ??.

4.1 The Lid-Driven Cavity (LDC) Simulation
The LDCapplication is a canonical simulation in computational fluid

dynamics (CFD), which simulates viscous incompressible fluid flow

in a square cavity with a moving boundary on only one side. The

CUDA simulation encompasses eight distinct kernels using 5-point

and9-point stencilsovera two-dimensional (2D) simulationgrid.Our

simulation set-up for LDCuses the same experimental parameters as

found in [20]: fluid density of 1 kд/m3
, Reynolds number of 100, and

lid velocity of 1m/s computing for exactly 1000 iterations. The com-

putational grid varied from 128
2
to 4096

2
. We conducted all analyses

on the machine configurations shown in Table 2, where all the accel-

eratordevices come fromasimilar time frame (2015).Auto-translated

OpenCL running on both NVIDIA and AMDGPUs produced exactly
the same residual output at every 50-timestep interval as the original

CUDA. Running on the CPU and Xeon Phi, the residuals differed

due to floating-point roundoff error that is caused by a reordering of

the reduction operation. However, this reduction was only used to

compute the residual diagnostic and not used by the simulation itself.

The performance of the LDC benchmark across a range of grid

sizes for each of the GPU platforms, shown in Fig. 3, provides some

interesting insights about the relative strengths of each of the com-

pute devices.
2
For the smaller grid sizes (i.e., 128

2
and 256

2
elements),
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Figure 3: Reported GFlops achievedwithin the iterative loop
of the LDC simulation as a function of problem size and com-
pute device.

our auto-translated OpenCL code performs better on the NVIDIA
GPU device than the original CUDA code does on that sameNVIDIA

device. This suggests that the kernel-launch overhead for the CUDA

implementation is higher than for theOpenCL implementation since

that overhead is more pronounced at smaller grid sizes (where there

is insufficient work to amortize the cost of the launch overhead).

However, as the problem scales to realistic work sizes, the efficiency

of NVIDIA’s CUDA implementation far surpasses that of NVIDIA’s

OpenCL implementation. At the largest problem size, the NVIDIA

OpenCL implementation only achieves 65% of the performance of

the original NVIDIA CUDA implementation.

For the AMD S9150 GPU, the performance of our auto-translated

OpenCL tracks the performance of the original CUDA performance

through 1024
2
grid elements. After this point, however, the perfor-

mance of the AMD S9150 GPU on LDC degrades. This degradation is
not due to a limitation ofGPUmemory, as theworking set size for the

simulation is 8 bytes/variable× 3 variables/cell× (xdim×ydim) cells.
This translates to approximately 400MB for the 4096

2
problem size

vs. the 16GB of available GPUmemory. So, what causes the perfor-

mance degradation? As shown in later sections, this degradation at

scale turns out to be unique to LDC and the AMD S9150 GPU, where

we observe that during a critical phase of the LDC computation, and

on the S9150 only, the CPU reaches 100% utilization running the

ksoftirqd daemon.

For the IntelXeonPhi (KnightsCorner) platform, theperformance

of our auto-translated OpenCL implementation is underwhelming.
3

Hotspot analysis with Intel Vtune indicates that the majority of

the time in the two most expensive kernels, ldc_explicit_iter
and ldc_explicit_init_resid_output, is spent performing un-

aligned loads and stores (with respect to the 512-bit vector width)

to/from globalmemory. This prevents the full utilization of themem-

ory bandwidth of the co-processor, and in turn, significantly impacts

performance.

2
The reported GFlops measurement takes into account device allocations, memory

transfers, and kernel executions; one-time runtime initialization costs are triggered

before the timed loop.

3
In auto-translating theCUDAcode toOpenCL,CU2CLalso auto-translates theNVIDIA-

specific CUDA optimizations, which, while largely appropriate for the AMD S9150 GPU,

are not for the Intel Xeon Phi.
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Platform Tested CPU RAM OS / Kernel Accelerator / Driver Compiler(s)

NVIDIA GPU (CUDA/OpenCL) (2x) Intel Xeon E5-2637 (8x) 32 GiB DDR4 Debian Jessie (8.6) Nvidia K80 (367.35) nvcc 7.5.17

AMDGPU (OpenCL) v4@ 3.50 GHz @ 2400 MHz 3.16.0-4 AMD S9150 (fglrx 15.30.3) gcc 4.9.2

Intel CPU (OpenCL) (2x) Intel Xeon E5-2697 (8x) 8 GiB DDR3 Centos 6.8 (2.6.32- Intel MIC SC7120P (KNC) gcc 4.4.7

Intel Xeon Phi (OpenCL) v2@ 2.70 GHz @ 1333 MHz 642.6.2.el6.x86_64 ) (MPSS 3.3.3 OpenCL 14.2)

Altera FPGA (OpenCL) (2x) AMDOpteron 6272 (16x) 4 GiB DDR3 Centos 6.8 (2.6.32- Bittware S5-PCIe-HQ-D8 gcc 4.4.7

@ 1.4 GHz @ 1600 MHz 573.18.1.el6.x86_64) Stratix V (Quartus 16.0)

Table 2: Test machine configurations

The unaligned loads and stores occur because the LDC algorithm

is designed to accept any size of x and y dimension and uses condi-

tionals to mask off no-op threads in the Grid/ND-range that extend

beyond the compute region during kernel execution. While this

makes the algorithm very general, it prevents the compiler from

guaranteeing proper load and store alignment, which then adversely

impacts performance. While better performance on fixed power-of-

two problem sizes can be obtained by modifying the algorithm, the

goal of this study is to compare the performance of existing codes

rather than optimizing for best performance on a per-platform ba-

sis. That being said, however, we did identify a few optimizations

that could be incorporated into a static source-to-source translator

(like CU2CL) to provide a two-fold performance improvement on

Xeon Phi. First, several LDC kernels make use of the pow function
to compute squared or cubed values; VTune indicated a non-trivial

time cost for these operations. Thus, any call to pow having a con-
stant exponent was “unrolled” to a sequence of multiplies, which

could easily be added as a translation-time option. Second, despite

the necessarily unaligned loading semantics, we find that the com-

piler does not perform sufficiently aggressive automatic prefetching.

Thus, we manually inserted prefetching, first by reading values into

the L2 caches that would be shared by multiple threads and later

by reading thread-specific data. A source-to-source translator like

CU2CL could identify critical read accesses from global memory and

optionally inject appropriate prefetching code ahead of the read step.

(Note: Currently, these optimizations are not included in our CU2CL

translator but could be rolled in as part of a future release.)

CPU performance for a highly SIMD-izable application like LDC

is not expected to be competitive with accelerator devices, but the re-

sults are included for completeness here. A slight performance gain

is observed from the optimizations manually applied to the Xeon

Phi, indicative of the architectures’ parallel design and optimization.

4.2 The Fen ZiMolecular Dynamics Simulation
Fen Zi, a large-scale molecular dynamics simulation developed at

the University of Delaware, contains 17,768 lines of CUDA code,

not counting the lines of standard C++. It leverages both N-body

and spectral methods and heavily utilizes the cuFFT library. The

application was optimized for the NVIDIA Fermi and Kepler ar-

chitectures and exploits both constant and texture memory spaces

throughout the hand-written N-body kernels for efficient access to

program-wide variables and arrays.

To evaluate the correctness and performance of the translated Fen

Zi applicationwith respect to the original CUDA,we used two differ-

ent simulation sizes of a dimyristoyl phosphatidylcholine (DMPC)

bilayerwith a timestepof one femtosecond, as per [25]. The small test

(DMPC Small) consists of 17,004 atoms with 14,096 bonds, 19,108 an-

gles, and 22,536 dihedrals; it runs for 10,000 times steps. Themedium

test (DMPCMedium) is an approximately 2x2 expansion of the small

test and consists of 68,484 atoms with 56,696 bonds, 76,588 angles,

and 90,144 dihedrals; it runs for 1,000 time steps. Due to the inherent

stochasticity of the molecular dynamics simulation, the results vary

slightly between different platforms or different runs on the same

platform. To ensure that the CU2CL translation did not change the

algorithm, we performed 10 runs of both problem sizes on each plat-

form, averaged the potential energy at each timestep, and plotted

a ribbon of the 95% confidence interval around the average in Fig. 4.

While the evolution varies across devices and individual runs on a

single device, the trajectory of the stochastic simulation remains

consistent across platforms and iteratons.
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Figure4:Comparisonof thepotentialenergyevolutionof the
stochastic Fen Zi simulation.

Similar to the LDC observations in §4.1, the NVIDIA OpenCL

implementation only achieves 67% and 68% of the original CUDA im-

plementation on the small and medium test problems, respectively.

4
The auto-translated OpenCL could not be evaluated on Xeon Phi, due to its lack of

image memory support to replace CUDA textures. It also could not be evaluated on the

Intel CPU, due to a segmentation fault within the Intel OpenCL implementation when

JIT-compiling the clFFT kernels.
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Figure 5: A comparison of nanoseconds of simulation time
performed per day (reported by Fen Zi).

However, without any manual optimization, the Fen Zi OpenCL

implementation (generated by CU2CL) on the AMD S9150 GPU out-

performs the original CUDA implementation on the NVIDIA K80

GPU by 1.2× on the small test and 3.1× on themedium test, as shown

in Fig. 5. Though somewhat counter-intuitive, CUDA-optimized

applications are capable of running on comparable non-NVIDIA

platforms with higher absolute performance than on the original

target hardware. Previous work on AMDGPUs with VLIW-based

architectures indicated that OpenCL code tuned for CUDA devices

oftenperformsworseunless specifically re-tuned [5, 17]. Today, how-

ever, the optimizations needed to improve performance on NVIDIA

devices also performwell on contemporary AMD devices (i.e., after

2012, when AMD switched from a VLIW architecture to a scalar

architecture with the release of the Graphics Core Next (GCN) ar-

chitecture). For Fen Zi, not only does the auto-translated CUDA

application faster on theAMDGPU, the performance scales better to

larger problems sizes on the AMDGPU as well. When the problem

size increases by roughly four-fold, the AMD GPU still performs

relatively close to the same amount of simulation per day (i.e., only

a 1.3× reduction) while the CUDA and OpenCL implementations on

the NVIDIA GPU result in a more significant 3.2× reduction.

4.3 The GEMMolecularModeling Simulation
GEM [10, 13] is a molecular-modeling application that computes

the electrostatic surface potential of a biomolecule using an N-body

computation. It has been manually ported to several GPU and other

accelerator runtimes and platforms over the years, including ATI

Brook+ [3], NVIDIA CUDA [15], OpenCL [5], and Intel MIC via

OpenMP and AVX intrinsics [18]. The N-body kernel is known to be

amenable to both multi- and many-core architectures. It computes

the surface potential atM vertices along a surface, based on a sum

of contributions from individual charges at each of N atoms in the

biomolecule. Specifically, the potential is calculated based on the

analytic, linearized Poisson-Boltzmann model.

TheKepler-optimizedversionofGEMusesasinglenon-branching

kernel to compute all atomic-charge contributions. Each thread com-

putes a single vertex from all atoms in the molecule. Within the

kernel, vertex data is manually cached in float2 shared-memory

buffers for in-thread reuse, and atom data is exchanged within a

warp via the CUDA __shfl intrinsic that allows in-register shar-
ing. However, because OpenCL exposes no such register-swap in-

trinsic, this must be emulated via local memory.
5
The emulation

5
AMDGPUs have a corresponding intrinsic that is not yet exposed via OpenCL.

atom_xloc=__shfl(atom_xloc, copyfrom, 32);

(a) Example usage of the CUDA __shfl intrinsic.

shfl_stage[tid]=atom_xloc;
barrier(CLK_LOCAL_MEM_FENCE);
atom_xloc=shfl_stage[copyfrom];
barrier(CLK_LOCAL_MEM_FENCE);

(b) Example of locally-staged __shfl emulation in
OpenCL.

Figure 6: Emulating the CUDA __shfl intrinsic in OpenCL.

uses sizeo f (DataType) ×WorkGroupSize additional shared mem-

ory and two workgroup-level synchronizations (one for writing

and one for reading), which dramatically increases the exchange

cost due to the increased latency of local memory operations and

synchronization. Code for the emulation is provided in Fig. 6.

Molecule Molecule

PDB ID Atoms Vertices

Short Name Full Name

Mb.HHelix [21] Myoglobin: H Helix 1MBO 382 5884

1uwo_A [23]

Calcium Form of

1UWO 1441 16529

Human S100B: Chain A

1qks_A [11]

Cytochrome CD1

1QKS 8542 58018Nitrite Reductase,

Oxidised form: Chain A

nucleosome [6] Nucleosome Core Particle 1KX5 25086 258797

2eu1 [4]

Chaperonin GroEL-E461K

2EU1 109802 898584

Crystal Structure

capsid [26]

Tobacco Ringspot

1A6C 476040 593615

Viral Capsid

Table 3: Macro-molecules used as input.

The original code and translated code are executed with six pro-

gressively larger biomolecules as input. Tab. 3 provides the relevant

protein database (PDB) identifiers and atom/vertex counts for these

biomolecules. The correctness of the computed surface potential

is validated on both platforms by a root mean square (RMS) error

analysis, as in [3]. We calculate the RMS error and normalized RMS

error for the computed surface potential across all vertices for eachof

the six tested biomolecules by dividing by the difference between the

maximum andminimum vertex potentials to account for the mag-

nitude of the vertex charge and compare against the CUDA version.

The computed errors in Tab. 4a for both NVIDIA OpenCL and AMD

OpenCL are well within the expected for the minimal reordering

of charge accumulation computations that occur when switching

between architectures with the same threading model. The Xeon

Phi, CPU, and Altera platforms cannot take advantage of the atom

shuffle behavior of the GPUs due to compilation issues with barriers

inside kernel loops. Therefore, we used a simpler loop, where all

vertices accumulate from the same atom at the same time, which

reorders the accumulations and results in the larger floating-point

roundoff error on non-GPU devices, as shown in Tab. 4b.
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Molecule NVIDIA K80 AMD S9150

Short Name RMS Normalized RMS Normalized

RMS RMS s

Mb.HHelix 1.1×10−5 1.4×10−6 4.4×10−5 5.6×10−6

1uwo_A 1.7×10−5 1.6×10−6 1.2×10−4 1.1×10−5

1qks_A 2.4×10−5 2.3×10−6 2.0×10−4 1.9×10−5

nucleosome 4.1×10−5 4.2×10−6 1.6×10−3 4.8×10−5

2eu1 5.0×10−5 2.5×10−6 2.9×10−4 1.5×10−5

capsid 5.1×10−5 7.0×10−6 1.0×10−4 1.5×10−5

(a) RMS and normalized RMS for auto-translated OpenCL on
GPU devices.

Intel CPU Intel MIC Altera FPGA

RMS Normalized RMS Normalized RMS Normalized

RMS RMS RMS

7.0×10−1 8.9×10−2 7.0×10−1 8.9×10−2 7.0×10−1 8.9×10−2

5.5×10−1 5.4×10−2 5.5×10−1 5.4×10−2 5.5×10−1 5.4×10−2

3.8×10−1 3.8×10−2 3.8×10−1 3.8×10−2 3.8×10−1 3.8×10−2

4.8×10−1 1.5×10−2 4.8×10−1 1.5×10−2 4.8×10−1 1.5×10−2

2.0×10−1 1.1×10−2 2.0×10−1 1.1×10−2 2.0×10−1 1.1×10−2

4.6×10−2 6.6×10−3 4.6×10−2 6.6×10−3 4.6×10−2 6.6×10−3

(b) RMS and normalized RMS for auto-translated OpenCL on non-GPU
platforms.

Table 4: Accuracy of GEM’s surface potential calculation is demonstrated via rootmean square error (RMS) analysis.
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Figure 7: A comparison of the GEM runtimes.

Fig. 7 shows the run times of the full solver for a range of accel-

erator devices. Included in the run times are the device allocations,

host/device data transfers and one or more kernel invocations, as

necessary, to accumulate the charge from all atoms to all vertices.

As with LDC, one-time runtime initializations, including OpenCL

JIT compilations, are performed before the timed region.

Examining the performance of a computationally dense N-body

kernel across five orders of magnitude of simulation complexity (in

terms of the number of atom × vertex calculations) across a range

of computational platforms yields some interesting performance

insights. Despite accounting for the high one-time initialization cost

of the CUDA runtime outside the timed region (approximately five

seconds), an approximately 200ms fixed cost is still present, demon-

strated by the lower-bound CUDA run time for the three smallest

molecules. This fixed cost is not associated with either the kernel

invocation or data transfers, as both are enclosed within their own

timing sub-region, implying the cost is paid during the cudaAlloc
calls, regardless of the size of the device allocation.

The OpenCL implementations for the CPU and GPU perform

the best at the smallest problem size (Mb.HHelix), where the per-

formance is dominated by runtime effects, and the Xeon Phi and

Altera FPGA run times have moderate fixed costs, but not as severe

as CUDA. The CPU begins to lag behind the GPUs by the second-

smallest test case (1uwo_A), and the FPGA begins to lag further

behind the Xeon Phi. By the third test case (1qks_A), the FPGA is

orders of magnitude slower than the other platforms and persists

through the larger tests. A deep analysis of how to improve the per-

formance of GPU-optimized codes on FPGA remains as future work.

In addition,with the third test (1qks_A) and fourth test (nucleosome),

the AMD GPU achieves the best performance despite the signifi-

cantlymore expensive__shfl emulation that it is performing versus

the original CUDA’s __shfl intrinsic. At this point, the advantage of
the CPU’s more efficient runtime system over the Xeon Phi’s tapers

off, and the two devices remain close to each other in performance

through the larger tests.
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The largest two tests (i.e., 2eu1 and capsid biomolecules) are suf-

ficiently large to amortize the fixed overheads, and thus, provide

additional insight into theperformanceportabilityof auto-translated

codes. The advantage of the __shfl atom exchange is apparent as

the original CUDA implementation achieves the best performance

on these two large biomolecules — 2eu1 and capsid. The OpenCL

implementation on theAMDandNVIDIAGPUs delivers remarkably

consistent performance across vendors. At scale the Xeon Phi gains

a slight performance edge over the CPU.

While running the GEMmolecular modeling code on Xeon Phi

is known to be capable of matching and even exceeding the perfor-

mance of running on the NVIDIA GPU [18], our auto-translated

OpenCL code actually performs worse on the Xeon Phi than on

the NVIDIA GPU. So, we investigated the Xeon Phi performance

using Intel’s VTune advanced hotspot analysis, as done for LDC. In

contrast to LDC, however, we could not identify a clear cause for

the poor performance. The GEM kernel is compute-bound, and the

profiling data shows that the performance is fairly distributed across

both mathematical operations and memory transactions. Further,

the cycles per instruction (CPI) is less than the four that VTune

indicates as a hot function.

By manually applying two optimizations to the Ope to improve

performancenCL implementation for Xeon Phi — (1) replacing divi-

sion by a square root with a reciprocal square-root operation and (2)

preloading the first atom to be processed by all threads before the

hot loop, we improved the performance by and additional 1.2× over

the baseline-auto-translated CUDA-to-OpenCL code on Xeon Phi

and caused no negative effects to the efficiency of the CPU OpenCL

execution.

5 RELATEDWORK
Platform portability has served as a driver for programming lan-

guage and runtime system design. For accelerators, we see this same

desire for an approach that provides “write once, run efficiently any-

where” behavior. As CUDAwas the first GPU programming model

to gain significant traction, many attempts to deliver platform porta-

bility have sought to bridge between CUDA or its PTX intermediate

representation (IR) and other platforms. These efforts generally take

one or more of the following approaches:

• A unified runtime layer implemented on top of CUDA and

one or more other models that support other devices

• Automatic source-level translation of kernel and/or host code

• Automatic conversion of PTX IR to another device’s IR

• Runtime compatibility or wrapper layers between CUDA and

one or more other models

Herewe leveragedCU2CL[12], acompiler-basedCUDA-to-OpenCL

auto-translator for both kernel and host code, that uses a small

amount of on-the-fly generated runtime compatability code to con-

struct functionally-equivalent analogs to CUDA functions. Closely

related is the work of Kim et al. [16], which provides hand-written

bi-directional runtime wrapper layers between CUDA and OpenCL

host code and a kernel translator; this work is distinguished from

CU2CL by providing an OpenCL-to-CUDA compatibility layer but

not aiming to provide a static translation of the host runtimeAPI and

providing a compatibility layer instead. Thus, the two projects have

complementary goals: Kimet al. needs an expansive third-party com-

patibility layer to execute CUDA code on OpenCL platforms while

we take a static translation approach to port a CUDA application to

pure OpenCL for continued development.

MCUDA[24] provides a compiler-basedCUDA-to-Pthreads trans-

lation of both host and kernel code but uses a runtime layer to map

the CUDA host API to standard libc calls. Other related work falls

in the category of PTX-to-X translation, where X is some other in-

termediate representation, e.g., Ocelot [8] and Caracal [9] provide

such functionality for x86 and AMD Compute Abstraction Layer

(CAL) [2], respectively, but rely on a third-party implementation of

the CUDA runtime API to manage and launch the translated PTX.

6 CONCLUSION
Automatic and portable translation from CUDA to OpenCL is a

practical tool for enabling CUDA applications to run on other accel-

erators, including AMD and NVIDIA GPUs, CPUs, Xeon Phi, and

even FPGAs. We demonstrate that CU2CL can achieve portability

and maintain or even improve application performance on the same

or different devices via three significant scientific applications: (1) lid-

driven cavity (LDC) for computational fluid dynamics, (2) Fen Zi for
molecular dynamics, and (3) GEM for molecular modeling. Further-

more, even without re-optimization, we show that CUDA-optimized

codes can run on AMDGPUs via static translation and achieve up

to a 3.1× speedup over the original CUDA-optimized code.
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