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a b s t r a c t

Directive-based programming of graphics processing units (GPUs) has recently appeared as a viable alter-
native to using specialized low-level languages such as CUDA C and OpenCL for general-purpose GPU pro-
gramming. This technique, which uses ‘‘directive’’ or ‘‘pragma’’ statements to annotate source codes
written in traditional high-level languages, is designed to permit a unified code base to serve multiple
computational platforms. In this work we analyze the popular OpenACC programming standard, as
implemented by the PGI compiler suite, in order to evaluate its utility and performance potential in com-
putational fluid dynamics (CFD) applications. We examine the process of applying the OpenACC Fortran
API to a test CFD code that serves as a proxy for a full-scale research code developed at Virginia Tech; this
test code is used to asses the performance improvements attainable for our CFD algorithm on common
GPU platforms, as well as to determine the modifications that must be made to the original source code
in order to run efficiently on the GPU. Performance is measured on several recent GPU architectures from
NVIDIA and AMD (using both double and single precision arithmetic) and the accelerator code is bench-
marked against a multithreaded CPU version constructed from the same Fortran source code using
OpenMP directives. A single NVIDIA Kepler GPU card is found to perform approximately 20! faster than
a single CPU core and more than 2! faster than a 16-core Xeon server. An analysis of optimization tech-
niques for OpenACC reveals cases in which manual intervention by the programmer can improve
accelerator performance by up to 30% over the default compiler heuristics, although these optimizations
are relevant only for specific platforms. Additionally, the use of multiple accelerators with OpenACC is
investigated, including an experimental high-level interface for multi-GPU programming that automates
scheduling tasks across multiple devices. While the overall performance of the OpenACC code is found to
be satisfactory, we also observe some significant limitations and restrictions imposed by the OpenACC
API regarding certain useful features of modern Fortran (2003/8); these are sufficient for us to conclude
that it would not be practical to apply OpenACC to our full research code at this time due to the amount of
refactoring required.

! 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many novel computational architectures have become available
to scientists and engineers in the field of high performance com-
puting (HPC) offering improved performance and efficiency
through enhanced parallelism. One of the better known is the
graphics processing unit (GPU), which was once a highly special-
ized device designed exclusively for manipulating image data but
has since evolved into a powerful general purpose stream
processor—capable of high computational performance on tasks

exhibiting sufficient data parallelism. The high memory bandwidth
and floating point throughput available in modern GPUs makes
them potentially very attractive for computational fluid dynamics
(CFD), however the adoption of this technology is hampered by
the requirement that existing CFD codes be re-written in
specialized low-level languages such as CUDA or OpenCL that more
closely map to the GPU hardware. Using platform specific
languages such as these often entails maintaining multiple
versions of a CFD application, and given the rapid pace of hardware
evolution a more portable solution is desired.

Directive-based GPU programming is an emergent technique
that has the potential to significantly reduce the time and effort
required to port CFD applications to the GPU by allowing the
re-use of existing Fortran or C code bases [1]. This approach
involves inserting ‘‘directive’’ or ‘‘pragma’’ statements into source
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code that instruct the compiler to generate specialized code in the
areas designated by the programmer; because such statements are
ignored by compilers when unrecognized, directives should permit
an application to be ported to a new platform without refactoring
the original code base. The particular scheme of directive-based
programming examined in this work is OpenACC, which is a stan-
dard designed for parallel computing that emphasizes heteroge-
neous platforms such as combined CPU/GPU systems. OpenACC
defines an API that will appear familiar to any programmer who
has used OpenMP, making it straightforward for domain scientists
to adopt. Additionally, OpenACC is relatively well supported,
with major compiler vendors such as Cray and PGI providing
implementations.

One of the principle objectives of this project was to evaluate
OpenACC for use in an in-house CFD application called SENSEI,
which is a multi-block, structured-grid, finite-volume code written
in Fortran 03/08 that currently uses a combination of OpenMP and
MPI for parallelism [2,3]. SENSEI is designed to solve the compress-
ible Navier–Stokes equations in three dimensions using a variety of
time integration schemes and subgrid-scale (turbulence) models. It
has a substantial code base that incorporates several projects into a
single CFD framework—due to this complexity, applying OpenACC
to SENSEI was anticipated to be a labor-intensive undertaking that
could have unforeseen complications. Furthermore, because
SENSEI is fully verified and being actively extended for ongoing
research projects, major alterations to the code structure were seen
as undesirable unless the performance benefits were very signifi-
cant. It was therefore decided to first test OpenACC on a simpler
surrogate code with the aim of uncovering any major difficulties
or incompatibilities before work began on the full-scale code and
permitting an easier analysis of various refactoring schemes. This
proxy code, which is discussed in more detail in Section 2, was
derived from a preexisting Fortran finite-difference code written
to solve the incompressible Navier–Stokes equations. Its simplicity,
small size and limited scope made major revisions and even creat-
ing multiple experimental versions feasible within a limited time-
frame, yet the data layout, code structure and numerical algorithm
are still representative of SENSEI and many other structured-grid
CFD codes.

1.1. GPU programming considerations

Modern graphics processors derive most of their computational
performance from an architecture that is highly specialized for
data parallelism, sacrificing low-latency serial performance in
favor of higher throughput. They are sometimes referred to as mas-
sively parallel because the hardware is capable of executing (and
maintaining context for) thousands of simultaneous threads,
which is two orders of magnitude greater than contemporary
CPUs [4,5]. To efficiently express this level of concurrency,
common general-purpose GPU (GPGPU) languages (such as
NVIDIA CUDA) use programming models that are intrinsically
parallel, where user-specified threads are applied across an
abstract computational space of parallel elements corresponding
to the hierarchy of hardware resources (e.g., CUDA defines ‘‘thread
blocks’’ that map to the ‘‘streaming multiprocessors’’, and the
thread blocks contain parallel ‘‘threads’’ that map to the CUDA
cores) [5]. This fundamental difference between GPGPU program-
ming languages and the languages traditionally used in CFD, such
as C and Fortran, makes porting existing codes to GPU platforms
a non-trivial task.

Current generation GPUs are strictly coprocessors and require a
host CPU to control their operation. On most HPC systems, the
CPU and GPU memory spaces are physically separate and must
communicate via data transfers across a PCIe (Peripheral
Component Interconnect Express) interface, so GPGPU programming

models include functions for explicitly managing data movement
between the host (CPU) and device (GPU) [5,6]. Contemporary
AMD and NVIDIA devices usually implement either the PCIe 2.0
or 3.0 standards, which permit maximum bandwidths of
approximately 8 GB/s or 16 GB/s respectively. This is an order of
magnitude lower than the RAM bandwidths typically seen in
HPC, so for data-intensive applications the PCIe connection can
easily become a bottleneck—in general, it is best practice to mini-
mize data transactions between the GPU and host [5].

1.2. The OpenACC programming model

OpenACC is a standard designed to enable portable, parallel
programming of heterogeneous architectures such as CPU/GPU
systems. The high-level API is based around directive or pragma
statements (in Fortran or C/C++ respectively) that are used to
annotate sections of code to be converted to run on an accelerator
or coprocessor (e.g., a GPU). In Fortran, these directives take the
form of comment-statements similar to those used in OpenMP [6]:

!$acc directive-name [clause [[,] clause]. . .] new-
line

As with OpenMP, the directives are used to designate blocks of
code as being suitable for parallelization. Ideally, no modification
of the original source code is necessary—within an appropriate
region the compiler can recognize data parallelism in sequential
structures, such as loops, and automatically convert this into
equivalent functionality in an accelerator specific language.

The programming model defines two main constructs that are
used to indicate parallel regions in a code: parallel and kernels.
Each type of region can be entered via the respective ‘‘!$acc
parallel’’ or ‘‘!$acc kernels’’ statement, and all operations
contained within will be mapped to the accelerator device. The dif-
ference between the two lies in how program statements such as
loop-nests are translated into accelerator functions. A parallel
region represents a single target parallel operation that compiles
to a single function on the device, and uses the same parallel con-
figuration (e.g., number of threads) throughout. As an example, a
parallel statement will correspond to a single CUDA kernel on an
NVIDIA device, mapping all concurrent operations to the same
kernel launch configuration. A parallel region requires that the
programmer manually identify data-parallel loops using relevant
clauses, otherwise they will default to sequential operations
repeated across the parallel elements of the accelerator. This is
analogous to the OpenMP parallel directive, which implicitly begins
a set of worker threads that redundantly execute sequential
program statements until a clause indicating a work-sharing loop
is reached. By contrast, a kernels region can represent multiple
target parallel operations and will map each loop-nest to a
separate accelerator function, meaning that a single kernels
construct might compile into multiple CUDA kernels. Manual
annotation of loops is optional within a kernels region, as the
compiler will attempt to automatically detect data-parallelism and
generate the most appropriate decomposition for each loop—serial
sections will default to serial accelerator functions [6].

OpenACC uses an abstract model of a target architecture that
consists of three levels of parallelism: gang, worker and vector.
Each level comprises one or more instances of the subsequent
levels, meaning each gang will contain at least one worker which
is itself divided into vector elements. The actual mapping from this
representation into a lower-level accelerator programming model
is specific to each target platform, so by default the decomposition
of loop-nests is made transparent to the programmer. OpenACC
does provide clauses permitting the user to override the compiler
analysis and manually specify the gang, worker and vector
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arrangement—with appropriate knowledge of the target hardware,
this can be used as a means of platform-specific optimization. On
NVIDIA GPUs it is usual that the gang dimension will correspond
to the number of CUDA thread-blocks while the worker and/or vec-
tor elements correspond to the threads within each block, so it is
possible to use these clauses to specifically define a kernel launch
configuration [7]. As will be discussed further in Section 4.2, this
can have a significant effect on the performance of OpenACC code.

On heterogeneous platforms in which the host and device
memory spaces are separate (which includes most contemporary
GPUs) any data structures accessed within an accelerator region
will be implicitly copied onto the device on entry and then back
to the host when the region terminates. This automatic data man-
agement is convenient, but in many cases it is much less efficient
than allowing the data to persist on the device across multiple ker-
nel calls. For this reason, the OpenACC API also defines a data con-
struct along with an assortment of data clauses that permit manual
control over device memory. The data region behaves similarly to
an accelerator region with regards to data movement, but it can
be used to wrap large blocks of non-accelerator code to manage
data across multiple accelerator regions. Using the various data
clauses that can be appended to the accelerator and data directives,
users can designate data structures to be copied on or off of the
accelerator, or allocated only on the device as temporary storage.
There is also an update clause that can be used within a data region
to synchronize the host and device copies at any time.

2. CFD code

The CFD code investigated in this paper solves the steady-state
incompressible Navier–Stokes (INS) equations using the artificial
compressibility method developed by Chorin [8]. The INS equa-
tions are a nonlinear system with an elliptic continuity equation
that imposes a divergence free condition on the velocity field. In
N dimensions, there are N + 1 degrees of freedom (N velocity com-
ponents and pressure). Letting q be the density constant and m = l/
q be the kinematic viscosity, the complete system takes the famil-
iar form below.
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The artificial compressibility method transforms this INS sys-
tem into a coupled set of hyperbolic equations by introducing a
‘‘pseudo-time’’ pressure derivative into the continuity equation.
Since the objective is a steady state solution, the ‘‘physical’’ time
in the momentum equations can be equated with the pseudo-time
value and the following system of equations will result:
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In Eq. (3), b represents an artificial compressibility parameter
which may either be defined as a constant over the entire domain
or derived locally based on flow characteristics; the INS code does
the latter, using the local velocity magnitude ulocal along with user
defined parameters uref (reference velocity) and rj to define

b2 ¼max u2
local; rj & u2

ref

! "
. The artificial viscosity based INS

equations can be solved using any numerical methods suitable
for hyperbolic systems—by iteratively converging the time

derivatives to zero, the divergence free condition of the continuity
equation is enforced and the momentum equations will reach
steady state.

2.1. Discretization scheme

The spatial discretization scheme employed in the INS code is a
straightforward finite difference method with second order
accuracy (using centered differences). To mitigate the odd–even
decoupling phenomenon that can occur in the pressure solution,
an artificial viscosity term (based on the fourth derivative of pres-
sure) is introduced to the continuity equation, resulting in the fol-
lowing modification to Eq. (3).
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In this format, the Cj terms represent user adjustable parameters for
tuning the amount of viscosity applied in each spatial dimension
(typical values '0.01), while Dxj represents the corresponding local
grid spacing. The kj terms are determined from the local flow veloc-
ity as follows.

kj ¼
1
2
jujjþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

j þ 4b2
q$ %

ð6Þ

Note that in two dimensions, the fourth derivatives of pressure
will require a 9-point stencil to maintain second order accuracy,
while all other derivatives used in the solution need at most a 5-
point stencil. These two dimensional stencils necessitate 19 solu-
tion-data loads per grid node or approximately 152B (76B) when
using double (single) precision. For stencil algorithms such as this,
which exhibit spatial locality in their data access patterns, much of
the data can be reused between adjacent grid nodes via caching so
that the actual amount of data loaded from main memory is
significantly less. Effective use of cache or GPU shared memory
(either by the programmer or compiler) is an important
performance consideration that is discussed further in Section 4.
The complete numerical scheme uses approximately 130 floating
point operations per grid node, including three floating point
division operations and two full-precision square roots. Boundary
conditions are implemented as functions independent from the
interior scheme, and in cases where approximation is required
(such as pressure extrapolation for a viscous wall boundary)
second-order accurate numerical methods are employed.

The time-integration method used for all of the benchmark
cases was forward-Euler. While the original INS code was capable
of more efficient time-discretization schemes, a simple explicit
method was selected (over implicit methods) because it shifts
the performance focus away from linear equation solvers and
sparse-matrix libraries and onto the stencil operations that were
being accelerated (see Fig. 1).

Fig. 1. Illustration of a 9-point finite-difference stencil. Required to approximate
the fourth derivatives of pressure with second order accuracy.
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2.2. Code verification and benchmark case

The INS code was verified using the method of manufactured
solutions (MMS) with an analytic solution based on trigonometric
functions [9]. The code was re-verified after each major alteration,
and it was confirmed that the final OpenACC implementation dis-
played the same level of discretization error and observed order of
accuracy as the original Fortran version. As an additional check, the
solutions to the benchmark case (described below) were compared
between the versions and showed no discrepancy beyond round-
off error.

Throughout this paper the INS code is used to run the familiar
lid-driven cavity (LDC) problem in 2-dimensions, which is a com-
mon CFD verification case that also makes a good performance
benchmark. All of the benchmark cases were run on a fixed-size
square domain, with a lid velocity of 1 m/s, Reynolds number of
100 and density constant 1 kg/m3. The computational grids used
for the simulations were uniform and Cartesian, ranging in size
from 128 ! 128 to 8192 ! 8192 nodes. A fully converged solution
is displayed in Fig. 2.

To evaluate relative performance of different versions of the
code, the wall-clock time required for the benchmark to com-
plete a fixed number of time-steps (1000) was recorded. Then,
to make the results easier to compare between dissimilar grid
sizes, this wall-clock time was converted into a GFLOPS (billion
floating point operations per second) value based on the known
number of floating point operations used for the calculations at
each grid point. The GFLOPS metric is used in all figures and
speedup calculations in subsequent sections, and is equivalent
to a constant (130) multiplied by the rate of nodes per second
computed. Note that division and square-root are counted as sin-
gle floating-point operations in this metric, even though these
are disproportionately slow on all the CPU and GPU architectures
tested [5,10]. Also note that, due to the smaller stable time-step,
1000 iterations results in a less converged solution for larger
grid sizes than the smaller ones; this was considered acceptable
for our purposes because computational performance was
observed to be independent of the state of the solution (i.e., a
nearly converged solution runs at the same rate as an initialized
solution).

3. Preliminary code modifications

Before attempting to migrate the INS code to the GPU, some
general high-level optimizations were investigated. These were
simple modifications to the Fortran code that required no language
extensions or specialized hardware aware programming to imple-
ment, but yielded performance improvements across all platforms.
Some of these alterations also reduced the memory footprint of the
code, which permitted larger problems to fit into the limited GPU
RAM. Additionally, the layouts of the main data structures were
revised to permit contiguous access on the GPU (and other SIMD
platforms). Note that although adjustments were made to the
implementation, no alterations were made to the mathematical
algorithm in any version of the INS code.

3.1. Reducing memory traffic

The most successful technique for reducing data movement was
the removal of temporary arrays and intermediate data sets wher-
ever possible by combining loops that had only local dependencies.
As an example, the original version of the INS code computed an
artificial viscosity term at each node in one loop, stored it in an
array, and then accessed that array at each node in a separate
residual calculation loop. By ‘‘fusing’’ the artificial viscosity loop
into the residual loop, and calculating the artificial viscosity when
needed at each node, it was possible to completely remove the
artificial viscosity array and all associated data access.

In the INS finite-difference scheme a total of three performance-
critical loops could be fused into one (artificial viscosity, local
maximum time-step and residual) which resulted in an overall
performance increase of approximately 2! compared to the un-
optimized version (see Fig. 3). It should be noted that fusing loops
in this manner is not always straightforward for stencil codes since
the stencil footprints may differ, meaning the domains or bounds
of the loops are not the same. In this particular case, the artificial
viscosity, local time-step and residual stencils were 9-point,
1-point and 5-point respectively, which necessitated ‘‘cleanup’’
loops along the boundaries and slightly increased the complexity
of the code. It was also not possible to fuse all of the loops in the
code because some operations, such as the pressure-rescaling step,
were dependent on the output of preceding operations over the
whole domain.

An additional modification made to decrease memory traffic
was to replace an unnecessary memory-copy with a pointer-swap.
The INS code includes multiple time integration methods, the sim-
plest being an explicit Euler scheme. This algorithm reads solution

Fig. 2. Horizontal velocity component and streamlines for a converged solution of
the LDC benchmark.
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Fig. 3. High-level optimizations applied to INS Fortran code, cumulative from left to
right. CPU performance on LDC benchmark, 512 ! 512 grid. Dual-socket Xeon
x5355 workstation, 8 threads/8 cores (note that this is an older model than the
Nehalem 8-core CPU benchmarked in Section 4.5).
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data stored in one data structure (solution ‘‘A’’) and writes the
updated data to a second structure (solution ‘‘B’’). In the original
version, after solution B was updated, the data was copied from
B back to A in preparation for the next time step. Obviously the
same functionality can be obtained by swapping the data struc-
tures through a pointer exchange, thus avoiding the overhead of
a memory-copy. The pointer swap was trivial to implement and
resulted in an additional speedup of approximately 25% (Fig. 3).
This could also be effective in more complex time integration algo-
rithms that require storage of multiple solution levels, such as mul-
tistage Runge–Kutta methods, although the speedup may not be as
significant.

3.2. Data structure modification: AOS to SOA

One of the more extensive alterations made to the INS code
when preparing for OpenACC involved revising the layout of all
data structures to ensure contiguous access patterns for SIMD
hardware. The main solution data in the code comprises a grid of
nodes in two spatial dimensions with three degrees of freedom
(DOF) per node corresponding to the pressure and two velocity
components at each grid location. In the original version this data
was arranged in an ‘‘array-of-struct’’ (AOS) format in which all
three DOF were consecutive in memory for each node—meaning
accessing a given DOF (e.g., pressure) for a set of multiple consecu-
tive nodes produced a non-unit-stride (non-contiguous) access
pattern. To permit efficient SIMD loads and stores across sequential
grid nodes the data structure was altered to a ‘‘struct-of-array’’
(SOA) format, in which it was essentially broken into three sepa-
rate two 2D arrays, each containing a single DOF over all the nodes
(Fig. 4). Contiguous memory transactions are usually more efficient
on SIMD hardware because they avoid resorting to scatter–gather
addressing or shuffling of vector operands; both Intel and NVIDIA
recommend the SOA format for the majority of array data access
[5,10].

4. Porting to the GPU with OpenACC

Because the INS code was being used to test potential enhance-
ments to a full-scale CFD research code, it was important to exam-
ine not just performance metrics but the entire procedure involved
when using the OpenACC API. The objective here was to evaluate
its practicality for use with complex CFD applications, including
assurance that OpenACC would not require major alterations to
the original source code that might complicate maintenance or
degrade the performance on the CPU. It was also desirable that

OpenACC work well with modern Fortran features and program-
ming practices, including object-oriented extensions such as
derived types [2,11].

The OpenACC code was constructed from the branch
incorporating the high-level optimizations and data-structure
refactoring described in Section 3, so the memory layout was
already configured for contiguous access. The next task involved
experimenting with OpenACC data clauses to determine the opti-
mal movement of solution data between host and device. As
expected, best efficiency was observed when the entire data
structure was copied onto the GPU at the beginning of a run and
remained there until all iterations were complete, thus avoiding
frequent large data transfers across the PCIe bus. Maintaining the
solution data on the GPU was accomplished by wrapping the entire
time-iteration loop in a ‘‘!$acc data’’ region, and then using the
‘‘present’’ clause within the enclosed subroutines to indicate that
the data was already available on the device. If the data were
needed on the host between iterations (to output intermediate
solutions, for example) the ‘‘!$acc update’’ directive could be
used in the data-region to synchronize the host and device data
structures, however this practice was avoided whenever possible
as it significantly reduced performance (updating the host data
on every iteration increased runtime by an order of magnitude).
The only device to host transfers strictly required between itera-
tions were the norms of the iterative residuals, which consisted
of three scalar values (one for each primitive variable) that were
needed to monitor solution convergence. Small transactions were
generated implicitly by the compiler whenever the result of an
accelerator reduction was used to update another variable; these
were equivalent to synchronous cudaMemcpy calls of a single sca-
lar value.

For the 2D INS code, which has a single-block grid structure and
only required two copies of the solution for explicit time integra-
tion, problems with over 200 million double-precision DOF fit
easily into the 5–6 GB of RAM available on a single compute card.
This was aided by the reduced memory footprint that the
optimizations in Section 3.1 provided; if the temporary arrays
had not been removed, the total memory used would be
approximately 30% greater. Codes with more complicated 3D data
structures, more advanced time integration schemes and/or
additional source terms would likely see fewer DOF fit into GPU
memory, so either data would have to be transferred to and from
host memory on each iteration or multiple GPUs would be needed
to run larger problems.

Ideally, applying OpenACC directives to existing software
should be possible without any modification to the original source
code; however, we encountered two instances where restrictions
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Node 1

U-velocity
Node 1

V-velocity
Node 1

Pressure
Node 2

U-velocity
Node 2

V-velocity
Node 2
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Fig. 4. Illustration of the ‘‘array-of-struct’’ and ‘‘struct-of-array’’ layouts for a sequence of 3 grid nodes in linear memory (3-DOF per node). Red cells represent access of the
pressure field for three consecutive nodes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Example AOS and SOA derived types. Allocated arrays of derived types are permitted (left), but types containing allocated arrays are not (right).
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imposed by the API forced some refactoring. One case stemmed
from a requirement (of OpenACC 1.0) that any subroutine called
within an accelerator region be inlined, which in Fortran means
that the call must satisfy all the criteria for automatic inlining by
the compiler [6]. For the INS code this was merely inconvenient,
necessitating manual intervention where one subroutine was caus-
ing difficulty for the PGI 13.6 compiler, however this inlining
requirement also has the significant consequence of prohibiting
function pointers within accelerator regions. Function pointers
form the basis of runtime polymorphism in object-oriented lan-
guages such as C++ and Fortran 2003 (e.g., virtual methods,
abstract interfaces) which can be very useful in practical CFD appli-
cations—for example, SENSEI uses such capabilities present in
Fortran 2003 to simplify calling boundary condition routines [2].
Applications that use these language features would need to be
rewritten to work with OpenACC, possibly by replacing

polymorphic function calls with complicated conditionals. Even
in the newer OpenACC 2.0 standard (which relaxes the require-
ments on function inlining) there is no support for function point-
ers in accelerator code [12], and although CUDA devices do support
the use of function pointers [5] this is not necessarily true for every
supported accelerator platform, so it seems likely that OpenACC
users will have to work with this restriction for now.

Another inconvenience for modern Fortran programs is the pro-
hibition of allocatables as members of derived types. Within an
accelerator region, the versions of the PGI compiler that we tested
did not permit accessing allocatable arrays that were part of a user-
defined type, although arrays consisting of user-defined types were
allowed (Fig. 5). This is unfortunate because using a derived type to
hold a set of arrays is a convenient method of expressing the SOA
data layout, which is better for contiguous memory access on the
GPU. In the relatively simple INS code this was easy to work

Fig. 6. Double-precision performance of LDC benchmark on NVIDIA C2075 (left) and K20! (right). The red line indicates the default OpenACC kernel performance, while the
green line indicates the maximum performance attained through tuning with the vector clause. The K20c results are not pictured, but are approximately 12% lower than the
K20! for all grid sizes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Computational Domain
(n×n finite-difference grid)

Fig. 7. Mapping of CUDA thread-blocks to computational domain (adapted from [5]). Each CUDA thread-block maps to a rectangular subsection of the solution grid, with each
thread performing independent operations on a single grid-node. Altering the x and y dimensions of the thread-blocks can significantly affect performance.
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around, but in the full scale research code derived types are used
extensively to manage allocated data structures, so applying
OpenACC would entail more refactoring [2].

4.1. OpenACC performance

In this section the computational performance of the OpenACC
code is evaluated on three models of NVIDIA GPU representing
two distinct microarchitectures—the specifications of the test
devices are presented in Table A1 of the Appendix. The compiler
used for these test cases was PGI 13.6, which implements the
OpenACC 1.0 standard. This version was only capable of
generating accelerator code for CUDA enabled devices, limiting
the selection of hardware to that made by NVIDIA; in
Section 4.4 a newer version (PGI 14.1) is also evaluated which
is capable of compiling for AMD devices, and the code is run on
AMD 7990 and 7970 cards [13]. Compilation was carried out
using the flags ‘‘-O4 -acc -Mpreprocess -Minfo=accel -mp
-Minline’’ set for all test runs. No additional architecture specific
flags or code modifications were used—the PGI compiler was
capable of automatically generating binaries for CUDA compute
capability 1.x, 2.x and 3.x devices.

A check of the accelerator-specific compiler output (generated
with the ‘‘-Minfo=accel’’ flag) indicated that shared memory
was being used to explicitly cache the solution data around each
thread-block. The statement ‘‘Cached references to size
[(x+4)x(y+4)x3] block’’ corresponds correctly to the
dimensions needed for the 9-point finite difference stencil in the
interior kernel, however the exact shared memory layout and
access pattern cannot be determined without direct examination
of the generated CUDA code. As shown by the red lines in Fig. 6,
preliminary benchmark results displayed steady high performance
on medium and large grid sizes with declining performance as
problem size decreased—this could be the result of kernel call
overhead or less efficient device utilization on the smallest grids.
These results were obtained using the default OpenACC config-
uration; as discussed in the next section, this performance can in
some cases be improved upon through tunable parameters that
are part of the OpenACC API (Fig. 6, green lines).

4.2. Tuning OpenACC

The OpenACC standard is designed to be transparent and
portable, and provides only a few methods for explicitly controlling

Fig. 8. Double-precision performance vs. thread-block dimensions for a fixed-size LDC benchmark. (4097 ! 4097, 50 million DOF). NVIDIA C2075 (left) and K20c (right).

Fig. 9. Single-precision performance vs. thread-block dimensions for a fixed-size LDC benchmark (4097 ! 4097, 50 million DOF). NVIDIA C2075 (left) and K20c (right).
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the generated device code. Notable examples are the gang and vec-
tor clauses, which as described in Section 1.2 can be used to manu-
ally specify the CUDA thread-block and grid dimensions: by
default, the PGI compiler automatically defines grid and block
dimensions based on its analysis of the user code, but this behavior
can be overridden by inserting gang and vector parameters near the
directives annotating loops. On CUDA devices, the launch config-
uration can have a significant influence on kernel performance
because it affects the utilization of multiprocessor resources such
as shared memory and registers, and can lead to variations in occu-
pancy. More subtly, changes to the shape of the thread blocks in
kernels using shared memory can also affect the layout of the
shared data structures themselves, which in turn might lead to
bank conflicts that reduce effective bandwidth [5] (see Fig 7).

For the INS code, compiler output indicated that the interior
kernel (which was derived from two tightly nested loops)
defaulted to a grid of 2-dimensional 64 ! 4 thread-blocks, while
the boundary scheme used 1-dimensional blocks with 128 threads
each; this same structure was used for both compute capability 2.x
and 3.x binaries. The larger dimension (64) in the interior kernel
corresponds to the blockDim.x parameter in CUDA C and was
mapped by OpenACC to the inner loop, which seems like a reason-
able heuristic since this will result in each of the eight 32-thread
warps accessing data in a contiguous (unit-stride) manner. To test
if this configuration was actually optimal for all architectures, the
code was modified using the vector clause so that the 2D block
dimensions of the interior scheme could be specified at compile
time. The compiler was permitted to choose the number of blocks
to launch (gang was not specified) and the entire parameter space
was explored for a fixed size problem of 50 million DOF. A surpris-
ing observation made during this test was that the total number of
threads per block was limited to a maximum of only 256; larger
numbers would still compile, but would generate an error at run-
time. This was unexpected because the number of threads per
block permitted by compute capability 2.0 and greater should be
up to 1024 [5,18]. Exactly why this limitation exists was never
determined—there was no evidence that more than 256 threads
would consume excessive multiprocessor resources (e.g., shared
memory), while the runtime error messages were inconsistent
between platforms and seemed unrelated to thread-block
dimensions. It could be speculated that there is some ‘‘behind
the scenes’’ allocation at work that is not expressed in the
compiler output (such as shared memory needed for the reduction
operations) but this could not be verified.

On the Fermi device it was found that the compiler default
of 64 ! 4 was not the optimal thread-block size, although the

difference between default and optimal performance was small.
As seen in Fig. 8, best double precision performance occurs at block
sizes of 16 ! 8 and 16 ! 4, both of which yield nearly 48 GFLOPS
compared to 44.6 GFLOPS in the default configuration. This is a dif-
ference of less than 8%, so there appears to be little benefit in
manually tuning the OpenACC code in this instance. For Kepler, a
similar optimal block size of 16! 8 was obtained, however the
difference in performance was much more significant: on the
K20c, the 64! 4 default yielded 68.5 GFLOPS while 16 ! 8 blocks
gave 90.6 GFLOPS, an increase of over 30% (Fig. 8). This result illus-
trates a potential tradeoff between performance and coding effort in
OpenACC—relying on compiler heuristics does not necessarily yield
peak performance, however it avoids the complexity of profiling and
tuning the code for different problem/platform combinations.

4.3. Single precision results

The use of single-precision (32-bit) floating point arithmetic has
the potential to be much more efficient than double-precision on
NVIDIA GPUs. Not only is the maximum throughput 2–3! greater
for single-precision operations, but 32-bit data types also require
only half the memory bandwidth, half the register file and half
the shared memory space of 64-bit types. In the Fortran code it
was trivial to switch between double and single-precision simply
by redefining the default precision parameter used for the real data
type; because the INS code used the iso_c_binding module for
interoperability with C code, the precision was always specified
as either c_double or c_float [11].

Fig. 10. Effects of thread-block optimizations and single vs. double precision arithmetic on OpenACC performance. Fixed-size LDC benchmark: 4097 ! 4097, 50 million DOF.
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It is beyond the scope of this paper to analyze the differences
between double and single precision arithmetic in CFD, however
for the particular case of the INS code running the LDC benchmark
it was observed that single precision was perfectly adequate to
obtain a converged solution; in fact, there was no discernible dif-
ference between the double and single precision results beyond
the expected round-off error (about 5 significant digits). The LDC
benchmark uses a uniform grid, which is probably more amenable
to lower precision calculations than a grid with very large ratios in
node spacing (e.g., for a boundary layer), but the result does
constitute an example in which single precision is effective for
incompressible flow calculations. The combination of OpenACC
and Fortran made alternating between double and single precision
versions of the INS code very straightforward.

On both the Fermi and Kepler devices the PGI compiler
defaulted to the same 64 ! 4 thread-block size that it used for
the double precision cases, and as before this was found to be sub-
optimal. As seen in Fig. 9, the C2075 was observed to perform best
with a block size of 16 ! 6, attaining almost 17% better perfor-
mance than default, while the K20c saw only a 3% speedup over
default at its best size of 32 ! 4. Interestingly, the default config-
uration on the K20c was nearly optimal for single precision but
performed poorly for double precision, while the reverse was true
for Fermi—there was no single block size that provided peak (or
near-peak) performance on both architectures for both the single
and double precision cases. This reiterates the notion that heuris-
tics alone are insufficient for generating optimum code on the
GPU and illustrates the difficulty of tuning for multiple platforms.

The speedups observed with single precision arithmetic were
less impressive than expected based on the theoretical through-
puts given in Table A1. On the C2075, the difference was about
50%, while the K20c saw a speedup of more than 100% at the
default block size and about 70% for the tuned configuration.

These numbers are still significant, however, and given the ease
with which the code can alternate between double and single pre-
cision it is probably worth testing to see if the full-scale CFD code
achieves acceptable accuracy at lower precision. A comparison of
the double and single precision results at default and optimal block
sizes are displayed in Fig. 10.

4.4. Targeting multiple GPUs and architectures with OpenACC

While OpenACC is designed to provide a portable programming
model for accelerators, there are certain configurations that still
require manual intervention by a programmer. Perhaps the most
important of these is the use of multiple accelerators. When a
region is offloaded with OpenACC, it is offloaded to exactly one
device. A number of modifications are necessary to allow support
for multiple devices, and further to support multiple devices of
multiple types. In order to explore this issue, we evaluated our test
code with two approaches to spreading work across multiple
GPUs: we created a version that manually partitions the work
and hand-tuned the data transfers and also evaluated an extension
to OpenACC/OpenMP that automatically provides multi-device
support.

In order to exploit multiple devices when available, the applica-
tion needs to be structured such that the work can be divided into
a number of independent workloads, or blocks, much like the more
traditional issue with distributed computing models such as MPI.
Our 2D INS code lends itself to a straightforward decomposition
into blocks along the y-axis, resulting in contiguous chunks of
memory for each block and only boundary rows to be exchanged
between devices across iterations. The multi-GPU version deter-
mines how many blocks are required by using the ‘‘acc_get_num_
devices(<device_type>)’’ API function provided by OpenACC,
but this in and of itself presents an issue. While the API is quite
simple, the device_type is implementation defined, and the PGI
accelerator compiler provides no generic device type for ‘‘accelera-
tor’’ or ‘‘GPU’’. Instead, the options are ACC_DEVICE_NVIDIA,
ACC_DEVICE_RADEON and ACC_DEVICE_HOST. Since the number
of accelerators must be known, and there is no generic way to
compute it, we check the availability of both NVIDIA and AMD
Radeon devices, falling back on the host CPU whenever the others
are unavailable.

Given the number of devices, an OpenMP parallel region creates
one thread per device, and sets the device of each thread based on
its ID. As with the single GPU case, data transfer costs are a con-
cern, so each thread uses a data-region to copy in the section of
the problem it requires. Unlike the single GPU case, the data cannot
all be left on each GPU across iterations, since the boundary values
all must be copied back to main memory at the end of each itera-
tion and exchanged to other GPUs before the beginning of the next.
This change incurs both extra synchronization between threads,
and extra data movement, meaning that the multi-GPU version is
less efficient on a single device than the single-GPU version
described above. To mitigate this, we implemented the transfer
to only copy the boundary elements back and forth, and to do that
asynchronously. While this does not completely offset the cost, it
does lower it considerably. Mechanisms do exist to transfer these
values directly from one GPU to another, but they are not exposed
through the OpenACC programming model at this time.

We evaluated this version of the code with a recently released
version of the PGI OpenACC compiler, version 14.1 with support
for both NVIDIA and AMD Radeon GPUs. The GPU hardware specs
are described in Tables A1 and A2 in the Appendix, and results are
presented in Fig. 11. Even with a relatively simple decomposition,
the INS code clearly benefits from the use of multiple GPUs, scaling
3.8 times from one NVIDIA c2070 to four, or nearly linear scaling
onto four devices. The NVIDIA k20! system performs better than
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the c2070s, and in fact on a single k20! outperform the k20c
described earlier by a small margin. The Kepler architecture seems
to be materially more sensitive to the extra synchronization over-
head and the high register usage of the application than the Fermi
architecture for this code. Finally, the AMD architecture proves to
perform extremely well for this kind of application, with a single
consumer-grade GPU board containing two GPU dies outperform-
ing both of our NVIDIA configurations by a relatively wide margin.
This is especially unexpected due to the lower theoretical peak
floating point performance per die on the AMD 7990. Based on
our tests, and discussions with PGI engineers, the result appears
to be due to the simpler architecture of the AMD GPU making it
easier to attain close to theoretical peak on the hardware, where
the NVIDIA GPUs might still perform better with a greater degree
of hand-optimization.

In addition to our manual version, we also evaluate a version
using an experimental multi-GPU interface, called CoreTSAR [15].
In essence, CoreTSAR allows users to specify the associations
between their computations and data, and uses that information
to automatically divide the work across devices, managing the
splitting, threading and data transfer complexities internally. The
resulting implementation is simpler than the manual version

evaluated above, but not necessarily as tuned. Fig. 12 shows our
results with both versions scaling across the four NVIDIA Fermi
c2070 GPU system. As you can see from these results, CoreTSAR
does in fact scale with the additional GPUs, but not as well as the
manual version, scaling to only 2.6! rather than nearly 4! for
the manual version on four GPUs. The reason appears to be an
increase in the cost of the boundary exchange after each step, since
CoreTSAR requires the complete data set to be synchronized with
the host to merge data before sending the updated data back out.
As solutions like CoreTSAR mature, we suggest that they focus on
offering simple and efficient boundary transfer mechanisms to
better support CFD applications.

4.5. Comparisons with CPU performance

To evaluate the performance benefits of OpenACC acceleration,
the results from the GPU benchmarks were compared against the
INS code re-compiled for multicore x86 CPUs. This represents a
unified INS code base capable of running on either the CPU or
GPU. It is identical to the Fortran + OpenACC code discussed
throughout Section 4 except that the OpenACC directives are
switched off in favor of OpenMP statements (using the

0

0.5

1

1.5

2

2.5

3

OpenACC 
(NVIDIA 
C2075)

OpenACC 
(NVIDIA 
K20C)

OpenACC 
(NVIDIA 
K20X)

OpenACC  
(AMD 

7990 (1 of 
2 dies))

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

OpenACC 
(NVIDIA 
C2075)

OpenACC 
(NVIDIA 
K20C)

OpenACC 
(NVIDIA 
K20X)

OpenACC  
(AMD 

7990 (1 of 
2 dies))

Fig. 14. Relative speedup of each GPU platforms vs. CPU platforms. (Left) Speedup over Sandy Bridge E5-2687W 16-cores. (Right) Speedup over Nehalem X5560 8-cores.

Fig. 15. Performance of CPU (OpenMP) code vs. grid size. Xeon X5560 workstation, 16T/8C. (Left) All grid sizes from 128 ! 128 to 8192 ! 8192, in increments of 128. (Right)
Detail of grid sizes above 4096 ! 4096, in increments of 1.

B.P. Pickering et al. / Computers & Fluids 114 (2015) 242–253 251



preprocessor) and the compiler flags are modified appropriately to
generate efficient CPU code: ‘‘-O4 -Minfo -Mpreprocess –
mp=all -Mvect -Minline’’. The compiler used for the CPU case
was PGI 13.6, and according to the output from the ‘‘-Minfo’’ flag
this compiler was able to automatically generate vector instruc-
tions (SSE, AVX) for the target CPU platforms. The same version
was also used to generate code for the NVIDIA platforms, while
version 13.10 was used for the AMD GPU.

The CPU test hardware consisted of two dual-socket Intel Xeon
workstations that were selected to match the GPU hardware of
comparable generations. Thus there is an 8-core Nehalem worksta-
tion to match the Fermi GPUs, and a 16-core Sandy Bridge for com-
parison against the Keplers. More detailed specifications for these
test platforms are given in the appendix (Table A3). In Fig. 13 we
compare the maximum double-precision performance attained
by each platform on large grids (with over 4000 ! 4000 nodes).
In Fig. 14, the relative speedups of each GPU vs. the two CPU plat-
forms are shown.

The results presented in Fig. 13 represent the best performance
attained for each platform on large LDC benchmark cases (over
4000! 4000 nodes); this means that the most optimized versions
of the OpenACC code from Section 4 were used, not the default.
In the case of the CPU (OpenMP) version of the code, the grid size
was selected carefully to return the best results, because the actual
performance varied significantly with the size of the grid on the
CPU platforms, as illustrated in Fig. 15. The precise reasons for this
erratic performance are not completely understood, but the small
oscillations visible in the plot could be the result of variations in
the address alignment of the solution array columns, which can
have an effect on the bandwidth of SIMD load/store operations
on Intel CPUs [10,16]. The larger performance drops (such as the
4096! 4096 grid size) are most likely caused by cache conflict
misses, which have been shown to have significant performance
ramifications for stencil codes on x86–64 hardware [17,18]. A com-
plete analysis of the CPU performance is well beyond the scope of
this work, however these results are presented here to highlight an

important advantage of the software-managed shared memory on
the GPU, which is free from the effects of cache associativity and
shows relatively uniform performance.

5. Conclusions

The directive-based OpenACC programming model proved very
capable in our test CFD application, permitting the creation of an
efficient cross-platform source code. Using the implementation of
OpenACC present in the PGI compiler suite, we were able to con-
struct a portable version of the finite-difference INS code with a
unified Fortran code base that could be compiled for either x86
CPU or NVIDIA GPU hardware. The performance of this application
on a single high-end NVIDIA card showed an average speedup of
more than 20! vs. a single CPU core, and approximately 2.5!when
compared to the equivalent OpenMP implementation run on a
dual-socket Xeon server with 16 cores. Results with multiple
GPUs displayed excellent scalability as well, and tests with a
version of the PGI compiler capable of generating code for AMD
GPUs illustrated how an OpenACC application can be transparently
extended to new accelerator architectures, which is one of the
main benefits of directive-based programming models.

It was noted that some non-trivial modifications to the original
version of the Fortran INS code were required before it would run
efficiently on the GPU, particularly alterations to the data struc-
tures needed for contiguous memory access. These modifications
required additional programming effort, but did not harm the
CPU performance of the INS code—in fact, they appear to have
improved CPU performance in some cases (possibly due to better
compiler vectorization). More significant setbacks were the restric-
tions imposed by OpenACC 1.0 and the PGI compiler on device
function calls and derived types containing allocatables, both of
which disable very useful features of modern Fortran (e.g. function
pointers). These limitations were sufficient for us to decide that it
would not be productive to apply OpenACC to the Fortran 2003

Table A1
NVIDIA GPUs.

Model Architecture Compute capability ECC Memory (size, GB) Memory (bandwidth, GB/s) Peak SP GFLOPS Peak DP GFLOPS

Tesla C2070 Fermi GF110 2.0 Yes 6 144 1030 515
Tesla C2075 Fermi GF110 2.0 Yes 6 144 1030 515
Tesla K20c Kepler GK110 3.5 Yes 5 208 3520 1170
Tesla K20! Kepler GK110 3.5 Yes 6 250 3950 1310
Tesla K40 Kepler GK110 3.5 Yes 12 288 4290 1430

Table A2
AMD GPUs.

Model Architecture ECC Memory (size, GB) Memory (bandwidth, GB/s) Peak SP GFLOPS Peak DP GFLOPS

HD 7970 Southern Islands GCN No 3 264 3788 947
HD 7990 Southern Islands GCN No 3 (x2) 288 (x2) 4100 (x2) 947 (x2)

The HD 7970 is a single die version of the HD 7990.

Table A3
Intel Xeon CPUs.

Model Architecture ISA extension Threads/cores Clock (MHz) ECC Memory (bandwidth, GB/s) Peak SP GFLOPS Peak DP GFLOPS

X5355 Core SSSE3 4/4 2667 Yes 21 84 42
X5560 Nehalem SSE4.2 8/4 3067 Yes 32 98 49
E5-2687W Sandy Bridge AVX 16/8 3400 Yes 51 434 217

Clock frequency represents maximum sustained ‘‘turbo’’ level with all cores active. Theoretical GFLOPS were calculated based on these clock frequencies and using the given
ISA extensions.
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code SENSEI at this time, as it would require too many alterations to
the present code structure. We are instead investigating newer
directive-based APIs that may ameliorate some of these issues, par-
ticularly the OpenMP 4.0 standard which promises to support simi-
lar functionality as OpenACC (on both CPU and GPU platforms) [19].

Acknowledgments

This work was supported by an Air Force Office of Scientific
Research (AFOSR) Basic Research Initiative in the Computational
Mathematics program with Dr. Fariba Fahroo serving as the pro-
gram manager.

Appendix A.

The specifications of several CPU and GPU platforms are listed
in the tables below for reference (see Tables A1–A3).
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