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Abstract

Searching biological sequence databases is one of the
most routine tasks in computational biology. This task is
significantly hampered by the exponential growth in se-
quence database sizes. Recent advances in parallelization
of biological sequence search applications have enabled
bioinformatics researchers to utilize high-performance
computing platforms and, as a result, greatly reduce the
execution time of their sequence database searches. How-
ever, existing parallel sequence search tools have been fo-
cusing mostly on parallelizing the sequence alignment en-
gine. While the computation-intensive alignment tasks be-
come cheaper with larger machines, data-intensive initial
preparation and result merging tasks become more expen-
sive. Inefficient handling of input and output data can eas-
ily create performance bottlenecks even on supercomput-
ers. It also causes a considerable data management over-
head. In this paper, we present a set of techniques for effi-
cient and flexible data handling in parallel sequence search
applications. We demonstrate our optimizations through
improving mpiBLAST, an open-source parallel BLAST tool
rapidly gaining popularity. These optimization techniques
aim at enabling flexible database partitioning, reducing I/O
by caching small auxiliary files and results, enabling paral-
lel I/O on shared files, and performing scalable result pro-
cessing protocols. As a result, we reduce mpiBLAST users’
operational overhead by removing the requirement of pre-
partitioning databases. Meanwhile, our experiments show
that these techniques can bring by an order of magnitude
improvement to both the overall performance and scalabil-
ity of mpiBLAST.
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1 Introduction

In the past decade, research in computational biology has
been dramatically accelerated by the ever-increasing com-
putational power, which allows computers to help people
understand the composition and functional capability of bi-
ological entities and processes. A well-known outcome of
the fusion between high-performance computing and high-
throughput experimental biology was the assembly of the
human genome by Celera Genomics using a cluster with
nearly a thousand processors [11]. Computation-enabled
breakthroughs like this have huge impacts on solving im-
portant problems in areas such as medicine and environ-
mental science.

One computational biology area that has demanded and
benefited from parallel computing issequence database
search. These tools search for similarities between given
query sequences (e.g., DNA, amino-acid sequences) and
known sequences in a database. This helps people to iden-
tify the function of newly discovered sequences or to iden-
tify species of a common ancestor, and forms the founda-
tion of more challenging tasks such as whole-genome align-
ment. As a key component of many bioinformatics research
methods, popular sequence search tools such as BLAST [1]
are used on daily basis by scientists.

For these scientists, the average search cost on a se-
quential machine is growing despite faster CPUs: with
the help of new experimental technology and the Internet
for data collecting/sharing, existing sequence databases are
growing at a speed much faster than the average memory
size equipped at a single computer node [7]. Searching
databases that cannot fit into the main memory requires
a large amount of I/O operations. Parallelizing database
search is the obvious way to avoid exploding sequence
search time. Fortunately, search tools such as BLAST per-
form pair-wise comparison and are embarrassingly parallel.
In Section 2.1 we will give examples of parallel sequence
search tools. In particular, the mpiBLAST implementation
[7] is open-source, uses the portable communication library
MPI [18], and runs on a number of parallel platforms. Since
published in 2003, mpiBLAST has been steadily attracting
new users.
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However, although tools such as mpiBLAST can al-
most linearly shorten the computationally intensive se-
quence alignment process as more processors are used, un-
optimized data handling can easily bring operational and
management overhead, as well as creating new bottlenecks
in large parallel executions. For example, mpiBLAST re-
quires the biological database bepre-partitionedinto many
fragments, which are to be copied to individual nodes’ lo-
cal storage at a cluster for a parallel search. This pre-
partitioning step increases operational overhead, creates
a large number of small files, and may need to be re-
performed if a larger number of processors are to be used.
Another example isresult merging. A parallel search that
partitions the database needs to consolidate sequence seg-
ments found from individual database partitions for each
query sequence, and report them by the degree of similar-
ity to the query sequence. A non-scalable design of this
communication and I/O intensive process may result in a re-
sult merging time much larger than the sequence alignment
time, as we have observed in mpiBLAST runs. In addition,
this bottleneck situation deteriorates as the database size,
query size, result size, or machine size grows.

In this project, we investigate the end-to-end data flow
in mpiBLAST and present a set of optimizations that en-
ables efficient, as well as scalable data transfer and man-
agement. The main idea is to maximize the utilization
of memory and shared file systems available on parallel
computers, and explore parallelism in application compo-
nents outside the BLAST sequence alignment engine. We
demonstrate through experiments on multiple platforms that
these optimizations can bring dramatic improvement in both
overall performance and scalability. In addition, our solu-
tions alleviate users from the potentially expensive and te-
dious database pre-partitioning tasks, and enable flexible,
dynamic database distribution for future performance fine
tuning.

The rest of this paper is organized as follows: section
2 discusses background information on parallel sequence
search tools and mpiBLAST, as well as related work on par-
allel I/O. Section 3 presents our optimization approaches.
Section 4 shows performance results and analysis. Section
5 discusses future work and Section 6 concludes the paper.

2 Background and related work

2.1 Parallel sequence search

Our research is closely related to studies in design-
ing high-throughput biological sequence search programs,
especially parallel search programs or execution methods
[2, 3, 4, 6, 7, 10, 12, 13, 15, 16, 20, 24]. Among them,
hardware based BLAST accelerators [15] are normally not
freely accessible. In addition, they are tied to specific hard-

ware technologies and not portable. Our work is intended
to optimize parallel sequence search software by reducing
their non-search overhead in a portable manner.

Earlier work in parallel sequence search mostly adopts
the query segmentationmethod [3, 4, 6], which partitions
the sequence query set. This is relatively easy to implement
and allows the BLAST search to proceed independently on
different processors. However, as databases are growing
larger rapidly, this approach will incur higher I/O costs and
have limited scalability. Our paper follows the more recent
trend of pursuingdatabase segmentation[2, 7, 16], where
databases are partitioned across processors. This approach
better utilizes the aggregate memory space and can easily
keep up with the growing database sizes.

2.2 mpiBLAST

Our optimization techniques for parallel BLAST will be
built and evaluated in one portable existing implementa-
tion, the mpiBLAST tool developed at Los Alamos Na-
tional Laboratory [7]. Among the several published paral-
lel BLAST codes, this implementation reported the highest
speedup, underwent the largest scalability tests, and was di-
rectly integrated with the NCBI toolkit [19].

The parallelism of mpiBLAST search is based on
database segmentation. Before the search, the raw sequence
database needs to be formatted, partitioned into fragments,
and stored in a shared storage space. mpiBLAST organizes
parallel processes into one master and many workers. The
master uses a greedy algorithm to assign un-searched frag-
ments to workers. Then the workers copy the assigned frag-
ments to their local disks (if available) and perform BLAST
search concurrently. Upon finishing searching one frag-
ment, a worker reports its local results to the master for
centralized result merging. The above process repeats until
all the fragments have been searched. Once the master re-
ceives results from all the workers for a query sequence, it
calls the standard NCBI BLAST output function to format
and print out results to an output file. mpiBLAST achieves
good speedup, especially when the number of processes is
small or moderate, by fitting the database into main memory
and eliminating repeated scanning of disk-resident database
files. More mpiBLAST design details will be discussed in
the rest of the paper.

2.3 Other related work

Our work complements the above existing efforts of ex-
ploring parallelism in data-intensive bioinformatics appli-
cations,with a special focus on I/O and data management.
In particular, we experimented with using MPI-IO [17, 23],
which has been traditionally utilized by large-scale paral-
lel simulations, in biological sequence search codes. To our
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knowledge, our proposed approaches of using collective I/O
and dynamic database partitioning have not been studied in
any previous research (the only existing work on parallel
I/O for bioinformatics codes that we are aware of [26] is
based on executing mpiBLAST on top of PVFS [5], a file
system with parallel I/O support. The database still needs
to be pre-partitioned.). Meanwhile, our optimization tech-
niques are orthogonal to improvement on sequence search
algorithms (e.g., [9]), and will work together with these im-
provements to further enhance search applications’ overall
performance. In fact, optimization on the search algorithms
reduces computation costs and highlights the requirement
for more efficient data access and memory management
schemes.

In addition, we plan to incorporate methodologies from
existing work on parallel data mining (e.g., [21, 25])
and memory management for bioinformatics tools (e.g.,
[8, 14]), in our future research for designing efficient result
pruning and query batching.

3 Efficient parallel data handling for
BLAST: design and implementation

In this section, we present the major techniques that we
use to enable efficient I/O and data handling in mpiBLAST.
First, to illustrate the performance problem addressed by
this paper, we timed the main components of an mpiBLAST
run on one of our test platforms, an SGI Altix system at Oak
Ridge National Lab (more details on machine configuration
will be given in Section 4.1). The mpiBLAST version we
used in our experiments throughout this paper is 1.2.1, the
latest release available from the mpiBLAST web site.

Our primary research goal is toreduce non-search over-
heads in parallel BLAST. mpiBLAST authors reported low
overhead in 2003 using one to twenty five processes [7].
We repeated their experiments by searching the same query
set against the same database on the aforementioned SGI
Altix system. In Figure 1(a), we show the break down of
search and non-search (“other”) time in mpiBLAST’s over-
all execution time, for tests using different number of pro-
cesses. Although the database (GenBanknt ) has approx-
imately doubled its size since 2003, our results confirmed
the mpiBLAST authors’ results within the same range of
process numbers. However, it is clear that the portion of
non-search time grows steadily as more processes are per-
forming the search in parallel. When the number of pro-
cesses increases from 16 to 64, the portion of search time in
the total execution time slips from 95.6% to 70.7%. Further,
it is well recognized that the search time is very sensitive
to input queries. Our experiments show that for searches
against the smaller GenBanknr database using the default
search threshold and randomly sampled query sequence sets
of similar sizes as in the above test, a much more significant

portion of time needs to be spent on non-search tasks (see
Section 4).

In the rest of this section, we present several techniques
that reduce the costs of the non-BLAST-search components
of mpiBLAST. We implemented these techniques in our en-
hanced version of mpiBLAST, called pioBLAST in this pa-
per. The sequence search kernel is identical to that in mpi-
BLAST, which in turn builds on top of the NCBI BLAST
Toolkit [19]. Given the same input query and database, pi-
oBLAST and mpiBLAST generate the same output. As im-
proving the utilization of available aggregate memory was
one important motivation for database partitioning parallel
BLAST tools such as mpiBLAST, our discussion in this
paper will be focused on the scenario where the aggregate
memory is large enough to accommodate the database files
and intermediate search results. This is also easily satisfied
with today’s parallel computers.

3.1 Direct global database access and dynamic
partitioning

Raw sequence databases, usually stored in widely used
FASTA format, need to be indexed before they can be
searched by BLAST. This is normally done through the
formatdb tool included in the NCBI BLAST toolkit.
formatdb scans through the raw FASTA database and
produces a set of sequence and index files. In a BLAST exe-
cution, these files are searched against and the raw database
is not used. Note that users searching repeatedly against the
same database only need to perform theformatdb pre-
processing once.

mpiBLAST provides a tool calledmpiformatdb , a
wrapper of the standardformatdb , which integrates the
database formatting and partitioning tasks.mpiformatdb
is a sequential tool. Withmpiformatdb , users can spec-
ify the number offragmentsto partition the database into.
This will generaten sets of output files, wheren is the user-
specified number of fragments. At run time, if there are
local disks attached to the individual nodes, these database
fragments will be copied by processors that they are as-
signed to from shared storage to the private local storage
space of these processors.

This static partitioning approach has a few drawbacks.
First, it creates a large number of smaller files, which are
harder to manage, migrate, and share. Second, the database
needs to be re-partitioned if the number of processors to be
used in an mpiBLAST search exceeds the number of ex-
isting fragments. This brings inconvenience to users. Sec-
ond, asformatdb is relatively expensive by itself (e.g.,
it took 6 minutes and 22 minutes on a head node of the
SGI Altix system that we used, to pre-process and partition
the 1GBnr database and the 11GBnt database respec-
tively), the re-partitioning cost is not trivial. Third, with
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Figure 1. mpiBLAST Performance

a given number of processes, mpiBLAST’s performance is
sensitive to the number of database fragments, as shown
in mpiBLAST authors’ previous paper [7]. This is con-
firmed by our experiments. Figure 1(b) depicts the change
in mpiBLAST’s execution time with 32 processes when us-
ing different numbers of pre-generated database fragments.
This test searched an 150KB randomly sampled query set
against thenr database. When the number of fragments in-
creases, both the search time and non-search time rise. The
increase in search time is largely due to the I/O cost embed-
ded in the NCBI BLAST search kernel, which grows as the
total candidate result size increases when more fragments
are searched. The increase in non-search time is associ-
ated with the higher result merging and retrieving overhead.
As a result, the overall performance degrades significantly
as the number of fragments grows. Therefore, creating a
large number of fragments for running on different number
of processors is not a good option.

In pioBLAST, we use parallel I/O to access shared
databases and eliminate static partitioning. With the help of
index files and well structured sequence files generated by
formatdb , pioBLAST can easily perform dynamic par-
titioning and avoid generating anyphysicaldatabase frag-
ments. From the global index files, it is easy to identify
the file offsets of a given database fragment. The target
databases are first formatted and put in a shared file system.
The master process calculates the file ranges for each parti-
tion and distributes them to the worker processes, in terms
of (start offset, endoffset) pairs. The worker processes then
use such file ranges to read, in parallel, different segments
of the global sequence and index files into their local mem-
ory using MPI-IO. This way, one set of global formatted
database files can be partitioned dynamically into an arbi-
trary number of virtual fragments at execution time. This
virtual partitioning resembles the process of array distri-

bution in many parallel numerical simulations. We further
added limited modifications to the NCBI BLAST engine
that redirect accesses to disk files, used to hold database
fragments in NCBI BLAST and mpiBLAST, to in-memory
buffers filled in pioBLAST’s parallel input stage.

3.2 Result caching and merging

For each input query sequence, a BLAST search pro-
duces “alignment hits”, where a query sequence is aligned
with sequences in the database. A controllableE-valuede-
termines how many alignments will be reported in the final
output. The search hits are sorted by theirscores, which
measure the quality of each alignment1. When the database
is partitioned, individual workers do not have enough infor-
mation to determine whether their local results will qualify
to be included in the global output. Hence the local search
results need to be merged and filtered.

In our experiments on multiple platforms, the result
merging phase incurs the highest overhead in mpiBLAST,
and can easily grow to surpass the actual BLAST search
time as more workers are used. The reason is that mpi-
BLAST uses a merging scheme that serializes the process-
ing between workers. First, the workers send their local
result alignments (pieces of their local database sequences
that were found to align well with the query sequence) to the
master. The master sorts these result alignments by scores
indicating their degree of similarity to the query sequence.
For each result alignment to appear in the global output, the
master requests sequence information from the worker that
submitted that alignment. This process is repeated, in serial,
for all global result alignments.

In pioBLAST, we improved the mpiBLAST result merg-
ing phase. First, the workers cache sequence information

1For more details, see the BLAST paper [1].
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that are potentially useful in the output as local results
are discovered, which eliminates future accesses to multi-
ple memory-cached database files to retrieve such informa-
tion. Second, when workers submit their local results to
the worker, they only submit data items that are used in the
sorting and filtering process,i.e., alignment identifications,
necessary scores, and alignment output sizes. The align-
ment output size is computed by calling a modified NCBI
BLAST output routine that redirects the formatted result
data from file output to memory buffers. This greatly re-
duces the total message volume. After the master merges
the local results and identify the global results, it notifies
the workers of the selected alignments. Now knowing the
subset of their qualified local hits, the workers can write
out corresponding result buffers that they already prepared,
saving these data’s return trip to the master. This shifts the
bulk of work in result processing to the workers, and allow
output preparation to proceed in parallel.

3.3 Parallel output

Both mpiBLAST and pioBLAST produce search output
as a single file, with output data organized by query se-
quences. For each query sequence, the output starts with a
header containing search statistics, followed by result align-
ments. Just like Internet search engines output pages ranked
by their relevance to user queries, BLAST outputs align-
ments ranked by the degree of similarity between the query
sequence and database sequences, which is denoted by the
alignment scores.

In mpiBLAST, all output is handled by the master, who
invokes the NCBI BLAST’s output routines to create the
header and processes individual results alignment for every
query sequence. The workers’ processing power and I/O
bandwidth are not utilized.

In pioBLAST, we parallelize file output again using
MPI-IO. As mentioned in the previous section, the work-
ers cache eligible local results in memory buffers and send
the size of each result alignment output to the master. As
the sizes of the header and each alignment output record are
known to the master, it can compute the offset ranges for
individual alignment output record and distribute this infor-
mation to the workers. Finally, the workers work together to
create an MPI file view, which defines the ranges in a shared
file visible to all processes. Collective I/O is then used to en-
able all the workers to write out buffered results in parallel.
This allows data scattered innoncontiguoussource memory
locations and destination file locations to be output in a sin-
gle MPI-IO operation, where the MPI-IO library efficiently
performs data shuffling to combine these scattered accesses
into large, sequential writes.

Figure 2 illustrates the difference between pioBLAST
and mpiBLAST in result handling. Note that in mpiBLAST,

the communication between the master and the workers to
retrieve sequence information and the preparation of the
output buffers are both serialized by the master. In pi-
oBLAST, the workers carry out most of the output job and
work in parallel.

4 Performance results and analysis

In this section, we evaluate pioBLAST and compare it
with mpiBLAST, in terms of performance and scalability.

In most of our experiments, we used the GenBanknr
database, a protein type repository frequently searched
against by bioinformatics researchers. The size of the raw
nr database is nearly 1 GB, consisting of 1,986,684 pep-
tide sequences. With today’s typical cluster configuration,
a GenBank database can easily fit into the aggregate mem-
ory of a small number of nodes. To better control the query
output size, we created several input query sets, each con-
taining a different number of query sequences, by randomly
sampling thenr database itself.

Note that the previous mpiBLAST results were bench-
marked using the GenBanknt database, which is currently
about 11 GB. With databases of such a size,formatdb
will partition the output sequence and index files into mul-
tiple volumes. At this point, pioBLAST does not handle
multiple global database files, and there are two design al-
ternatives in addressing this problem. One is to extend pi-
oBLAST’s parallel input function to read multiple global
files simultaneously. This may bring performance benefits,
but complicates pioBLAST’s virtual partitioning and load
balancing schemes. The other is to modifyformatdb to
output single-volume output files. This does not require any
modification of pioBLAST, and simplifies file management,
but may not be an option on file systems that do not support
large files. We plan to make the design choice between the
two alternatives after inquiring initial users of pioBLAST.

All experiments were performed in shared queues. Ex-
cept for one or two out-liners, which were obviously caused
by concurrent jobs, the variance we observed was in gen-
eral very small, with a 95% confidence interval within�
3% of the average. This applies to both mpiBLAST and
pioBLAST, therefore we omit the error bars in result charts.

4.1 Results from an SGI Altix

The SGI Altix system that we used, Ram, resides at Oak
Ridge National Lab. It has 256 Intel 1.5 GHz Itanium2 pro-
cessors running Linux, each with 6 MB of L3 cache, 256K
of L2 cache, and 32K of L1 cache. Each processor has 8
GB of memory, which combines into 2 Terabytes of total
system memory. Both mpiBLAST and pioBLAST used the
SGI XFS [22] parallel file system.
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Figure 2. The output processes in pioBLAST and mpiBLAST.

Copy/Input Search Output Other Total

mpiBLAST 17.1 318.5 1007.2 11.3 1354.1
pioBLAST 0.4 281.7 15.4 10.4 307.9

Table 1. Breakdown of execution time for mpi-
BLAST and pioBLAST searching a 150KB se-
quence query against the nr database.

First, we take a close look at a sample execution of mpi-
BLAST and pioBLAST, searching the same 150KB ran-
domly sampled sequence query set against thenr database
using 32 processes. For mpiBLAST, we pre-partitioned the
database into 31 fragments, one for each worker process.
This partitioning, which we callnatural partitioning, is
equivalent to pioBLAST’s current default partitioning strat-
egy. As discussed earlier in this paper, natural partitioning
appears to result in the best overall performance for mpi-
BLAST, according to both the mpiBLAST authors’ results
[7] and our own experience. In the rest of the paper, all mpi-
BLAST results are benchmarked with natural partitioning.

Table 1 shows the breakdown of total execution time, for
each program, between several major phases. mpiBLAST
spends around 17 seconds on thecopystage, where it copies
the database fragments into individual nodes’ local storage.
Note that on this Altix there is no local storage open to user
jobs, so here mpiBLAST copies the data files to the shared
job scratch space on XFS. pioBLAST does not have the
copy stage. Instead, it has an input stage, where it per-
forms on-the-spot partitioning and parallel input through
MPI-IO. Each worker reads in one contiguous range from
every shared database file. This takes pioBLAST less than

half a second. At the end of this input stage, all pioBLAST
worker have contiguous memory buffers holding their local
portions of database files.

In the search stage, pioBLAST performs the same com-
putation as mpiBLAST does, but saves the time of im-
porting the local database partition into the memory. The
BLAST search kernel from NCBI can use memory mapped
files to input the disk-resident database. This can bring
the benefits of implicitly overlapping I/O and computation,
as well as avoiding subsequent I/O. mpiBLAST uses this
BLAST feature, with its I/O performed implicitly through
memory mapped files in the search stage. In pioBLAST,
however, we slightly modified the NCBI BLAST kernel
to work with the local database memory buffers explicitly
filled in the input stage, instead of memory buffers mapped
directly with disk-resident files.

The most significant improvement comes from the re-
sult processing stage. For both programs, with the default
e-value, around 100MB of output data is produced. mpi-
BLAST spends 954 seconds on the result merging and out-
put stage, due to its heavily serialized implementation. In
particular, the “result fetching” process (not shown in the
table), in which the master queries individual workers for
result alignment data, accounts for more than 40% of the
total output time. pioBLAST dramatically reduced the out-
put time, to a total of 12.6 seconds, with its efficient result
caching, merging, and parallel file writing.

The ”other” category includes tasks not counted in the
previous three columns. Examples of such tasks include
query broadcasting, as well as the initialization and cleanup
operations of the NCBI BLAST kernel.

In summary, pioBLAST significantly reduces the over-
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Query size 26KB 77KB 159KB 289KB
Output size 11MB 47MB 96MB 153MB

Table 2. Query sizes and corresponding
search output sizes

head of parallel searches. As a result, it improves the por-
tion of time spent on the BLAST search from mpiBLAST’s
24.5% to 95.5% for this particular search.

Next, we examine pioBLAST’s scalability in two dimen-
sions: parallelism and query/output data size.

To test how pioBLAST scales with an increasing number
of processes and compares with mpiBLAST, we ran both
programs using different numbers of processors. The query
size is fixed and we used the same 150KB query as in the
previous group of experiments, which will generate an out-
put file of nearly 100MB. Natural partitioning is used for
mpiBLAST and an equivalent virtual partitioning is used
for pioBLAST. The total number of processes ranges from
4 to 64. However, sincempiformatdb cannot generate
all arbitrary numbers of fragments, we could not partition
the nr database into 63 fragments, but 61. Consequently
we used 62 processes rather than 64 for both mpiBLAST
and pioBLAST in the last group of tests.

The results are shown in Figure 3(a). We break down
the total execution time into search and non-search (other)
times. For both programs, the search time decreases nicely
as the number of processes grows. However, in mpiBLAST
the non-search time, most spent on result merging and out-
put, increases steadily as more workers are used. When
more than 31 workers are used, the increase in output time
offsets the decrease in search time, causing the overall ex-
ecution time to grow. With 61 workers, only 10.3% of
mpiBLAST’s total execution time is spent on the BLAST
search. In contrast, with pioBLAST, a much smaller por-
tion of time is spent on non-search tasks. In its case, as
more workers are deployed the non-search time keepsde-
creasing, although at a rate slower than the search time de-
creases. From 32 total processes to 62, pioBLAST achieves
an overall speed up of 1.86, and with 61 workers still 92.4%
of its total execution time is spent on the BLAST search.

For data scalability tests, we fixed the number of pro-
cesses to 62 for both programs. A series of synthetic query
sequence sets of different sizes, again randomly sampled
from the nr database, are used to generate different out-
put sizes. Table 2 lists the corresponding query and output
sizes.

Figure 3(b) shows the results, grouped by output size.
As the query and output data size grows, both mpiBLAST’s
and pioBLAST’s overall execution times scale roughly with
the output size, so do their search times. The difference is

that the total execution time is dominated by result output
time in mpiBLAST, and by search time in pioBLAST. One
notable detail not portrayed well by the small bars in Figure
3(b) is that the non-search time of pioBLAST less than dou-
bled from the 11MB output to 153 MB output. This grow-
ing rate is much lower compared to that of mpiBLAST.

4.2 Results from an IBM Blade Cluster

To evaluate pioBLAST’s performance on a different par-
allel architecture, we repeated the process scalability exper-
iments on the IBM Blade Cluster at the High Performance
Computing Center, North Carolina State University. This
Linux cluster has 64 nodes offering a total of 128 Intel Xeon
2.8-3.0 GHz Processors. Each blade node is equipped with
4 GB memory and 40 GB disk place. The shared file system
is NFS.

Since this cluster is of a smaller scale and has signif-
icantly longer queue waiting time, we do the tests using
up to 32 processes only. In general, Figure 4 shows the
same trends as we observed on the ORNL Altix system.
One important difference here is that the shared file sys-
tem has significantly worse performance compared to XFS
on the Altix. As a result, pioBLAST’s portion of search
time decreases from 93% with 4 processes to 64% with
32, a much worse deterioration compared to on the Altix,
although still considerably milder than that of mpiBLAST
(from 50% with 4 processes to 14% with 32). Here, since
mpiBLAST’s search time embeds a certain amount of I/O,
its search time also does not scale well as more processes
are used.

5 Discussion and future work

There are several directions along which we plan to ex-
tend pioBLAST.

First, at this point we have only implemented the sim-
ple natural partitioning strategy in pioBLAST. Since each
worker accesses a single, sequential part of the global files,
we use the individual I/O interfaces of MPI-IO in the in-
put phase. pioBLAST’s partitioning framework allows easy
extension of natural partitioning into more sophisticated
strategies through manipulating the file ranges. In particu-
lar, dynamic load balancing can be readily incorporated by
assigning smaller file ranges to workers. Knowing that hav-
ing too many fragments degrades the overall mpiBLAST
performance, pioBLAST can adaptively find a compro-
mise between load balancing and controlling communica-
tion overhead, by starting from coarse fragments and gradu-
ally refining the task granularity. Further, the file ranges can
be decided at run time and differentiated between different
workers, ideal for scenarios where we have heterogeneous
nodes or skewed search.
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Figure 3. Scalability tests on the ORNL SGI Altix
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Figure 4. Process scalability results from the NCSU Blade Cluster

Second, when the number of workers grows, the size of
local results remains constant and the total size of result
alignments to be screened and merged by the master in-
creases linearly. pioBLAST’s result merging scheme can be
further improved by early score communication. This com-
munication may easily be added to broadcast the current
global score threshold, so that workers can perform local
pruning to stop processing for local results that fall under
the global cut line.

In addition, even with efficient result pruning, our result
caching and output schemes need to be adaptive to large
output data sizes for tasks such as database-against-database
BLAST and whole genome comparison. We plan to add
adaptive approaches, such as query batching and pipelining
that adjust to the amount of available memory, to use the
aggregate memory more effectively in handling larger tasks.

6 Conclusion

In this paper, we proposed, designed, and evaluated a set
of I/O and communication related optimizations for paral-
lel sequence search applications. These optimizations show

significant benefits in reducing both the search execution
time and the management costs. Although we choose to
implement and demonstrate our optimizations through mpi-
BLAST, the optimizations themselves are not specific to
this particular implementation or even the BLAST algo-
rithm. More specifically, our solutions (including dynamic
input data partitioning, parallel I/O, and Dis-centralized re-
sult processing) are independent of search algorithms, file
formats, or sequence data structures, making these solutions
applicable to parallel search tools that adopt a database-
partitioning approach in general.

We consider the major contributions of this paper to be
as follows:

1. We demonstrated that input and output data handling is
of great performance significance in parallel sequence
search applications.

2. We enabled online, dynamic partitioning of shared
databases, thereby eliminating the pre-partitioning
process, which divides a database to static fragments.
This offers low operational cost, reduced I/O, conve-
nience in data storage and management, and more flex-
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ibility in adjusting partitioning granularity.

3. We applied parallel I/O techniques that have been
traditionally used in large-scale parallel simulations
to bioinformatics applications, and such techniques
proved to be effective in this new context. Especially,
with the aids of collective and non-contiguous I/O pro-
vided by MPI-IO, we dramatically improved the out-
put performance of parallel BLAST by parallelizing
the originally serialized result processing procedure.

4. We designed and implemented schemes for aggressive
result caching and for efficient result merging, both uti-
lizing the available aggregate memory, CPU resources,
interconnection bandwidth, and I/O bandwidth to im-
prove the scalability of parallel sequence search.

5. We performed extensive performance evaluation and
analysis on multiple architectures, using a combination
of different query sizes and numbers of processors.
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