
10

From its humble beginnings as
shared Ethernet to its current success as
switched Ethernet in local-area networks
(LANs) and system-area networks and its
anticipated success in metropolitan and wide
area networks (MANs and WANs), Ethernet
continues to evolve to meet the increasing
demands of packet-switched networks. It does
so at low implementation cost while main-
taining high reliability and relatively simple
(plug and play) installation, administration,
and maintenance.

Although the recently ratified 10-Gigabit
Ethernet standard differs from earlier Ether-
net standards, primarily in that 10GbE oper-
ates only over fiber and only in full-duplex
mode, the differences are largely superficial.
More importantly, 10GbE does not make
obsolete current investments in network infra-
structure. The 10GbE standard ensures inter-
operability not only with existing Ethernet
but also with other networking technologies
such as Sonet, thus paving the way for Ether-
net’s expanded use in MANs and WANs.

Although the developers of 10GbE mainly
intended it to allow easy migration to higher
performance levels in backbone infrastruc-
tures, 10GbE-based devices can also deliver

such performance to bandwidth-hungry host
applications via Intel’s new 10GbE network
interface card (or adapter). We implemented
optimizations to Linux, the Transmission
Control Protocol (TCP), and the 10GbE
adapter configurations and performed sever-
al evaluations. Results showed extraordinari-
ly higher throughput with low latency,
indicating that 10GbE is a viable intercon-
nect for all network environments.

Architecture of a 10GbE adapter
The world’s first host-based 10GbE adapter,

officially known as the Intel PRO/10GbE LR
server adapter, introduces the benefits of
10GbE connectivity into LAN and system-
area network environments, thereby accom-
modating the growing number of large-scale
cluster systems and bandwidth-intensive
applications, such as imaging and data mir-
roring. This first-generation 10GbE adapter
contains a 10GbE controller implemented in
a single chip that contains functions for both
the media access control and physical layers.
The controller is optimized for servers that
use the I/O bus backplanes of the Peripheral
Component Interface (PCI) and its higher
speed extension, PCI-X.

Justin (Gus) Hurwitz
Wu-chun Feng

Los Alamos National

Laboratory

INTEL’S NETWORK INTERFACE CARD FOR 10-GIGABIT ETHERNET (10GBE)

ALLOWS INDIVIDUAL COMPUTER SYSTEMS TO CONNECT DIRECTLY TO 10GBE

ETHERNET INFRASTRUCTURES. RESULTS FROM VARIOUS EVALUATIONS

SUGGEST THAT 10GBE COULD SERVE IN NETWORKS FROM LANS TO WANS.

END-TO-END PERFORMANCE
OF 10-GIGABIT ETHERNET
ON COMMODITY SYSTEMS

Published by the IEEE Computer Society 0272-1732/04/$20.00  2004 IEEE

Figure 1 gives an architectural overview of
the 10GbE adapter, which consists of three
main components: an 82597EX 10GbE con-
troller, 512 Kbytes of flash memory, and
1,310-nm wavelength single-mode serial
optics transmitter and receiver. The 10GbE
controller includes an Ethernet interface that
delivers high performance by providing direct
access to all memory without using mapping
registers, minimizing the interrupts and pro-
grammed I/O (PIO) read access required to
manage the device, and offloading simple
tasks from the host CPU.

As is common practice with high-perfor-
mance adapters such as Myricom’s Myrinet1

and Quadrics’ QsNet,2 the 10GbE adapter
frees up host CPU cycles by performing cer-
tain tasks (in silicon) on behalf of the host
CPU. However, the 10GbE adapter focuses
on host off-loading of certain tasks—specifi-
cally, TCP and Internet Protocol (IP) check-
sums and TCP segmentation—rather than
relying on remote direct memory access
(RDMA) and source routing. Consequently,
unlike Myrinet and QsNet, the 10GbE
adapter provides a general-purpose solution
to applications that does not require modify-
ing application code to achieve high perfor-
mance. (The “Putting the 10GbE Numbers
in Perspective” sidebar compares 10GbE’s per-

formance to these other adapters.)

Testing environment and tools
We evaluate the 10GbE adapter’s perfor-

mance in three different LAN or system-area
network environments, as Figure 2 shows:

• direct single flow between two comput-
ers connected back-to-back via a
crossover cable,

• indirect single flow between two com-
puters through a Foundry FastIron 1500
switch, and

• multiple flows through the Foundry Fast-
Iron 1500 switch.

Host computers were either Dell Pow-
erEdge 2650 (PE2650) or Dell PowerEdge
4600 (PE4600) servers.

Each PE2650 contains dual 2.2-GHz Intel
Xeon CPUs running on a 400-MHz front-
side bus (FSB) using a ServerWorks GC-LE
chipset with 1 Gbyte of memory and a dedi-
cated 133-MHz PCI-X bus for the 10GbE
adapter. Theoretically, this architectural con-
figuration provides 25.6-Gbps CPU band-
width, up to 25.6-Gbps memory bandwidth,
and 8.5-Gbps network bandwidth via the
PCI-X bus.

Each PE4600 contains dual 2.4-GHz Intel

11JANUARY–FEBRUARY 2004

512-Kbytes flash

Intel
82597EX XAUI

4×3.125 Gbps

4×3.125 Gbps

RX
optics

TX
optics

Intel 1310-nm serial optics

PCI-X Bus
(8.5 Gbps)

XGM II

10.3 Gbps out

10.3 Gbps in

Intel PRO/10 GbE LR

P
C

IX
-I

/F

D
M

A

X
G

X
S

P
C

S

P
M

A

M
A

C

8/10 bytes
PCS

3.125 Gbps
SerDes

Figure 1. Architecture of the 10GbE adapter. The three main components are a 10GbE controller, flash memory, and serial
optics.

Xeon CPUs running on a 400-MHz FSB,
using a ServerWorks GC-HE chipset with
1 GByte of memory and a dedicated 100-
MHz PCI-X bus for the 10GbE adapter. This
configuration provides theoretical bandwidths
of 25.6-, 51.2-, and 6.4-Gbps for the CPU,
memory, and PCI-X bus.

Since publishing our initial 10GbE results,
we have run additional tests on Xeon proces-
sors with faster clocks and FSBs, as well as on
64-bit Intel Itanium2 and AMD Opteron sys-
tems, as we discuss later.

In addition to these hosts, we use a Foundry
FastIron 1500 switch for both our indirect sin-
gle flow and multiflow tests. In the latter case,
the switch aggregates Gigabit Ethernet and

10GbE streams from (or to) many hosts into
a 10GbE stream to (or from) a single host.
The total backplane bandwidth (480 Gbps)
in the switch far exceeds our test needs because
both 10GbE ports are limited to 8.5 Gbps.

From a software perspective, all the hosts
run current installations of Debian Linux with
customized kernel builds and tuned TCP/IP
stacks. We tested numerous kernels from the
Linux 2.4 and 2.5 distributions. Because the
performance differences between these kernel
builds prove negligible, we do not report the
kernel version in our results.

The experiments described in this article
focus on bulk data transfer performance. We
use two tools to measure network through-

12

HOT INTERCONNECTS 11

IEEE MICRO

To appreciate the 10GbE adapter’s performance, we consider it in the
context of similar network interconnects. In particular, we compare
10GbE’s performance with that of its predecessor, 1GbE, and the most
common interconnects for high-performance computing (HPC): Myrinet,
QsNet, and InfiniBand.

1GbE
With our extensive experience with 1GbE chipsets, we can achieve

near line-speed performance with a 1,500-byte maximum transmission
unit (MTU) in a LAN or system-area network environment with most pay-
load sizes. Additional optimizations in a WAN environment should let us
achieve similar performance while still using a 1,500-byte MTU.

Myrinet
We compare 10GbE’s performance to Myricom’s published performance

numbers for its Myrinet adapters (available at http://www.myri.com/
myrinet/performance/ip.html and http://www.myri.com/myrinet/perfor-
mance/index.html). Using Myrinet’s GM API, sustained unidirectional
bandwidth is 1.984 Gbps and bidirectional bandwidth is 3.912 Gbps. Both
numbers are within 3 percent of the 2-Gbps unidirectional hardware limit.
The GM API provides latencies of 6 to 7 µs.

Using the GM API, however, might require rewriting portions of lega-
cy application code. Myrinet provides a TCP/IP emulation layer to avoid
this extra work. This layer’s performance, however, is notably less than that
of the GM API: Bandwidth drops to 1.853 Gbps, and latencies skyrocket
to more than 30 µs.

When running Message-Passing Interface (MPI) atop the GM API, band-
width reaches 1.8 Gbps with latencies between 8 to 9 µs.

InfiniBand and QsNet II
InfiniBand and Quadrics’ QsNet II offer MPI throughput performance

that is comparable to 10GbE’s socket-level throughput. Both InfiniBand and
Quadrics have demonstrated sustained throughput of 7.2 Gbps. Using the

Elan4 libraries, QsNet II achieves sub-2-µs latencies1 while InfiniBand’s
latency is around 6 µs.2

Our experience with Quadrics’ previous-generation QsNet (using the
Elan3 API) produced unidirectional MPI bandwidth of 2.456 Gbps and a 4.9-
µs latency. As with Myrinet’s GM API, the Elan3 API may require appli-
cation programmers to rewrite the application’s network code, typically
to move from a socket API to the Elan3 API. To address this issue, Quadrics
also has a highly efficient TCP/IP implementation that produces 2.240
Gbps of bandwidth and less than 30-µs latency. Additional performance
results are available elsewhere.3

We have yet to see performance analyses of TCP/IP over either Infini-
Band or QsNet II. Similarly, we have yet to evaluate MPI over 10GbE. This
makes direct comparison between these interconnects and 10GbE rela-
tively meaningless at present. This lack of comparison might be for the
best. 10GbE is a fundamentally different architecture, embodying a design
philosophy that is fundamentally different from other interconnects for
high-performance computing. Ethernet standards, including 10GbE, are
meant to transfer data in any network environment; they value versatility
over performance. Interconnects designed for high-performance comput-
ing environments (for example, supercomputing clusters) are specific to
system-area networks and emphasize performance over versatility.

References
1. J. Beecroft et al., “Quadrics QsNet II: A Network for

Supercomputing Applications,” presented at Hot Chips 14
(HotC 2003); available from http://www.quadrics.com.

2. J. Liu et al., “Micro-Benchmark Level Performance
Comparison of High-Speed Cluster Interconnects,” Proc. Hot
Interconnects 11 (HotI 2003), IEEE CS Press, 2003, pp. 60-65.

3. F. Petrini et al., “The Quadrics Network: High-Performance
Clustering Technology,” IEEE Micro, vol. 22, no. 1, Jan.-Feb.
2002, pp. 46-57.

Putting the 10GbE Numbers in Perspective

put—NTTCP (New Test TCP, http://www.
leo.org/~elmar/nttcp/) and Iperf (Internet Per-
formance, http://dast.nlanr.net/Projects/
Iperf/)—and note that the experimental results
from these tools are generally confirmed by
another oft-used tool called Netperf (Network
Performance, http://www.netperf.org). We do
not report our NetPerf results as they are too
coarse for the purposes of this study.

NTTCP and IPerf measure the time
required to send a stream of data. IPerf mea-
sures the amount of data sent over a consis-
tent stream in a set time. NTTCP measures
the time required to send a set number of
fixed-size packets. In our tests, IPerf is well
suited for measuring raw bandwidth while
NTTCP is better suited for optimizing the
performance between the application and the
network. As our goal is to maximize applica-
tion performance, NTTCP provides more
valuable data in these tests. We therefore pre-
sent primarily NTTCP data throughout the
article. (Typically, the performance difference
between the two is within 3 percent, and in
no case does IPerf yield results significantly
contrary to those of NTTCP.)

In addition to reporting throughput results
for bulk data transfer, we provide preliminary
results on end-to-end latency. To determine
the latency between a pair of 10GbE-enabled
hosts, we use NetPipe (http://www.scl.ames-
lab.gov/netpipe/). We compute latency values
by halving the average round-trip time of a sta-
tistically representative number of single-byte
ping-pong tests. Such tests indicate the respon-
siveness of the network to small packets.

We use the Stream benchmark (http://
www.cs.virginia.edu/stream/) to measure
memory bandwidth.

To estimate the CPU load across throughput
tests, we sample /proc/loadavg at 5- to 10-sec-
ond intervals. The CPU load is a unitless num-
ber that roughly corresponds to the percentage
of the CPU processing capability in use at any
time. A load less than 1 indicates that the CPU
is completing more tasks than are being request-
ed of it; a load greater than 1 indicates that more
tasks are being asked of the CPU than it is capa-
ble of performing in a given time.

Finally, to facilitate data transfer analysis, we
use two tools: tcpdump (http://www.tcp-
dump.org), a widely available tool for analyz-
ing protocols at the wire level; and Magnet,3 a

publicly available tool developed by our research
team at Los Alamos National Laboratory.

Experimental results
Our tests focus primarily on throughput

performance. To facilitate analysis, we begin
with a standard TCP configuration as our
baseline and apply optimizations cumulative-
ly. We also provide initial measurements of
end-to-end latency over 10GbE and anecdo-
tal results on recently available hardware,
including AMD Opteron- and Intel Itani-
um2-based systems.

Throughput
We begin our experiments with a stock

TCP stack, implementing optimizations one
by one to improve network performance
between two identical Dell PE2650s con-
nected via 10GbE.

The more common network adaptor and
TCP optimizations result in little to no per-

13JANUARY–FEBRUARY 2004

PE2650 PE2650

PE2650

FastIron
1500

PE2650

10GbE

1GbE
FastIron

1500
PE2650

10GbE

10GbE 10GbE

(a)

(c)

(b)

PE2650 PE2650 PE4600 PE4600 PE4600

Figure 2. Local- and system area network testing environ-
ments: direct single flow (a), indirect single flow (b), and
multiple flows (c) through the switch.

formance gains. These optimizations include
changing variables such as the device transmit
queue and stack backlog lengths and using
TCP time stamps. We then tune TCP by cal-
culating the ideal bandwidth-delay product
and setting the TCP window sizes according-
ly. The product should be relatively small for
a LAN, even at 10GbE speeds. We observe a
latency of 19 µs running back-to-back and 25
µs running through the Foundry switch. At
full 10GbE speed, this results in a maximum
bandwidth-delay product of about 48 Kbytes,
well below the default window setting of 64
Kbytes. At observed speeds, the maximum
product is well under half of the default. In
either case, these values are within the scope
of the default maximum-window settings.

Baseline: Standard TCP with standard MTU
sizes. We begin with single-flow experiments
across a pair of unoptimized (stock) Dell
PE2650s using a standard 1,500-byte maxi-
mum transfer unit and a 9,000-byte jumbo-
frame MTU. In their stock configurations,
the dual-processor PE2650s have a standard
maximum PCI-X burst transfer size—con-
trolled by the maximum memory read byte
count (MMRBC) register—of 512 bytes and
run a symmetric multiprocessing (SMP) ker-

nel. In each single-flow exper-
iment, NTTCP transfers
32,768 packets ranging in
size from 128 bytes to 16
Kbytes at increments of 32 to
128 bytes.

Figure 3 shows that using a
larger MTU size produces 40
to 60 percent better through-
put than the standard 1,500-
byte MTU. This result is
directly attributable to the
additional load that 1,500-
byte MTUs impose on the
CPU—for example, interrupt
processing occurs every 1,500
bytes instead of every 9,000
bytes. Specifically, for 1,500-
byte MTUs, the CPU load is
approximately 0.9 on both
the send and receive hosts; for
9,000-byte MTUs the CPU
load is only 0.4.

We observe bandwidth
peaks at 1.8 Gbps with a 1,500-byte MTU and
2.7 Gbps with a 9,000-byte MTU. In addition,
we note that using a 9,000-byte MTU intro-
duces high-frequency oscillations in through-
put, irrespective of payload size, as well as a
substantial low-frequency oscillation (that is,
dip) for payloads between 7,436 and 8,948
bytes in size. This dip is preceded by a similar
frequency peak, starting at about 6,272 bytes.
These low-frequency oscillations in throughput
occur because virtually all TCP implementa-
tions force the alignment of the congestion win-
dow with the MTU’s payload size. Further
explanation is provided in the “Results analy-
sis” section.

Increasing the PCI-X burst transfer size. Although
the default maximum PCI-X burst transfer size
is 512 bytes, the 10GbE adapter supports a
burst size as large as 4,096 bytes. Thus, we
increase the PCI-X burst transfer size (that is,
the MMRBC register) to 4,096 bytes. This
simple optimization to the 10GbE hardware
improves peak performance for a 9,000-byte
MTU to over 3.6 Gbps, a 33-percent increase
over the baseline case. With a 1,500-byte
MTU, increasing the burst size only produces
a marginal throughput increase, indicating that
the burst size does not hinder performance for

14

HOT INTERCONNECTS 11

IEEE MICRO

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

 0 2,048 4,096 6,144 8,192 10,240 12,288 14,336 16,384

T
hr

ou
gh

pu
t (

M
bp

s)

Payload size (bytes)

1,500 MTU, SMP, 512 PCI
9,000 MTU, SMP, 512 PCI

Figure 3.Results for stock TCP for 1,500– and 9,000–byte MTUs. Because smaller MTUs
impose greater loads on the CPU, larger MTUs produce 40 to 60 percent better throughput.

smaller MTUs. The CPU load
remains relatively unchanged
from the baseline numbers
reported in the previous sec-
tion.

Running a uniprocessor kernel.
Having optimized the PCI-X
burst transfer size, our next
counterintuitive optimization
is to replace the SMP kernel
with a uniprocessor kernel.
Currently, the Pentium 4
Xeon SMP architecture
assigns each interrupt to a sin-
gle CPU instead of process-
ing them in a round-robin
manner among CPUs. Con-
sequently, the interrupt con-
text code of the 10GbE driver
cannot take advantage of an
SMP configuration. Coupled
with the additional cost of
kernel locking, this results in
uniprocessor kernels running faster than SMP
kernels.

Figure 4 shows the results when we switch
to a uniprocessor kernel. Using 9,000-byte
MTUs improves the average throughput by
an additional 20 percent. For 1,500-byte
MTUs, both the average and maximum
throughputs increase by nearly 20 percent. In
these tests, the CPU load is uniformly lower
than in the SMP tests, primarily because the
CPU spends less time in a spin-locked state.

Tuning buffer sizes and MTU sizes. As stated
previously, we observe sharp decreases and
increases in the throughput for the baseline
case of a 9,000-byte MTU. Using tcpdump,
we trace the causes of this behavior to ineffi-
cient window use by both the sender and
receiver. This problem manifests itself in low-
latency environments where the bandwidth-
delay product is relatively large.

We partially overcome the first limitation
by greatly increasing the default socket buffer
size. However, this is a poor band-aid solu-
tion. Setting the socket buffer at many times
the ideal window size should not be necessary
in any environment; in a WAN environment,
setting the socket buffer too large can adverse-
ly affect performance. The low latencies and

large MTU size in LAN and system-area net-
work environments, however, undermine the
conventional wisdom surrounding window
settings, as discussed later. (More precisely,
these problems are related to the large maxi-
mum segment size rather than the MTU.
However, the maximum segment size is so
closely tied to MTU that, for ease of read-
ability, we use the MTU exclusively through-
out our discussions. This does not affect the
accuracy of our analyses.)

Figure 5 shows the effects of increasing the
socket buffer sizes from 64 Kbytes to 256
Kbytes. First, all the sharp throughput peaks
and valleys for the 9,000-byte MTU disap-
pear. In addition, oversizing the socket buffer
improves peak throughput by 15 percent for
1,500-byte MTUs (from 2.15 Gbps to 2.47
Gbps) and by 7 percent for 9,000-byte
MTUs (from 3.64 Gbps to 3.9 Gbps). Aver-
age throughput increases by 7 percent for
1,500-byte MTUs and by 31 percent for
9,000-byte MTUs

We achieve even better performance with
nonstandard MTU sizes. As Figure 6 shows,
the peak observed bandwidth achieved with a
9,000-byte jumbo-frame compatible MTU is
4.11 Gbps with an 8,160-byte MTU (it is pos-
sible to use 8,160-byte MTUs in conjunction

15JANUARY–FEBRUARY 2004

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

 0 2,048 4,096 6,144 8,192 10,240 12,288 14,336 16,384

T
hr

ou
gh

pu
t (

M
bp

s)

Payload size (bytes)

1,500 MTU, SMP, 4096 PCI
9,000 MTU, SMP, 4096 PCI

Figure 4. Results for a uniprocessor kernel. Average throughput improves 20 percent for a
9,000-byte MTU; both average and maximum throughout increase by 20 percent for a
1,500-byte MTU.

with any hardware that supports 9,000-byte
MTUs). With a 16,000-byte MTU, we obtain
a similar peak bandwidth (4.09 Gbps) but
with a higher average bandwidth.

Performance is better with the 8,160-byte

MTU than with the larger
9,000-byte MTU because the
smaller size allows the entire
payload to fit into 8,192-byte
memory buffers. The Linux
kernel allocates buffers in
power-of-two-sized blocks of
pages (for example, 32; 64; ...
8,192; or 16,384 bytes; and
so on). As the buffer sizes
increase, the kernel’s memo-
ry management subsystem
requires more time to allocate
them. A 9,000 byte MTU
requires 16,384-bytes of
buffer space, wasting nearly
half of the allocated memory
and increasing stress on the
kernel.

Interestingly, the curve for
the larger MTU shows typi-
cal asymptotic growth up to
a point, after which it falls
and then levels off. Analysis
reveals that the congestion
window artificially caps the
bandwidth. This occurs
because the MTU is large rel-
ative to the bandwidth-delay
product. That is, as the MTU
approaches one half of the
bandwidth-delay product, it
becomes increasingly difficult
for available bandwidth to be
efficiently used. This problem
is discussed at greater detail in
a later section. In this case, the
congestion window becomes
“stuck” at two segments.

End-to-end latency
Although our experiments

focus primarily on maximiz-
ing the bulk data throughput
of the 10GbE adapters, we
recognize the importance of
latency in LAN and system-
area network environments,

especially for high-performance scientific
applications running on clusters.

Using NetPipe, we measure a 19-µs end-
to-end latency between PE2650 systems.
Running the tests through the Foundry Fast-

16

HOT INTERCONNECTS 11

IEEE MICRO

Figure 5. Performance with standard MTUs. Increasing the socket buffer size from 64 to 256
Kbytes removes the bandwidth peaks and valleys observed with standard MTU sizes and
improves performance.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

 0 2,048 4,096 6,144 8,192 10,240 12,288 14,336 16,384

T
hr

ou
gh

pu
t (

M
bp

s)

Payload size (bytes)

1,500 MTU, UP, 4096 PCI, 256-Kbyte buffer
9,000 MTU, UP, 4096 PCI, 256-Kbyte buffer

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

 0 2,048 4,096 6,144 8,192 10,240 12,288 14,336 16,384

T
hr

ou
gh

pu
t (

M
bp

s)

Payload size (bytes)

16,000 MTU, UP, 4096 PCI, 256-Kbyte buffer
8,160 MTU, UP, 4096 PCI, 256-Kbyte buffer

Figure 6. Performance with nonstandard MTU sizes. Peak performance is achieved with
nonstandard MTUs that work better with the system’s memory subsystem.

Iron switch increases the
latencies to between 24 and
25 µs. Latency increases lin-
early proportional to payload
size, as Figure 7 shows. The
latency for packets with a
1,024-byte payload is 23 µs
in a back-to-back configura-
tion.

This increase in latency
does increase the expected
bandwidth-delay product,
and consequently, the size to
which we should set the sock-
et buffer. This larger socket
buffer, however, is still within
the scope of the default sock-
et buffer settings. We there-
fore did not explicitly
compensate for this increase
in our discussion of the buffer
size’s effects on throughput,
as no compensation should have been needed.
However, it is still necessary to set the socket
buffer to many times the bandwidth-delay
product to eliminate the wide oscillations in
throughput observed throughout the previ-
ous section.

Eliminating interrupt coalescing can triv-
ially reduce these numbers by about 5 µs.
Specifically, we run all the 10GbE tests dis-
cussed here with the default 5-µs receive inter-
rupt delay. This delay specifies the amount of
time to wait between receiving a packet and
raising an interrupt to the kernel to service
packet reception. In high-performance Eth-
ernet adapters, such delays allow a single inter-
rupt to service multiple received packets
(thereby reducing CPU load and the number
of required context switches). Although it
improves throughput for bandwidth-inten-
sive applications, such an optimization is inap-
propriate for latency-sensitive applications.

Anecdotal results
Since the publication of our initial 10GbE

results,4 we have continued our testing on an
expanded range of systems. These systems
include both 32-bit Xeon systems (2.66 GHz
and 3.02 GHz) from Intel and 64-bit systems
from Intel and Angstrom Microsystems with
Intel Itanium2 Deerfield and AMD Opteron
246 CPUs, respectively.

The system architecture of the Xeon is
roughly the same as that of the PE2650s. Most
notably, the Xeon systems have a 533-MHz
FSB (compared to the PE2650s’ 400-MHz
FSB). The architectures of the 64-bit plat-
forms are fundamentally different from their
32-bit counterparts as well as to each other.

As expected, both sets of faster Xeon-based
systems perform better than the PE2650s.
The 2.66-GHz nodes reach 4.64 Gbps where-
as the 3.02-GHz nodes reach 4.80 Gbps. The
disparity in observed performance is signifi-
cantly less than the disparity in clock rates.
The better performance results primarily from
the faster FSB rather than the more compu-
tationally powerful processor. In addition,
networks with the Xeon-based nodes consis-
tently exhibit end-to-end latencies that are 2
µs shorter than those with PE2650s.

The 2.0-GHz AMD Opteron 246 platform
achieves a consistent throughput of 6.0 Gbps
with a 9,000-byte MTU. With a 16,000-byte
MTU, the throughput exceeds 7.3 Gbps.
End-to-end latency approaches the sub-10-µs
level, holding at 10 µs.

At the November SC2003 conference, held
in Phoenix, Arizona, these Opteron-based sys-
tems were used in an entry for the annual
Bandwidth Challenge competition. The
entry, a joint effort by the California Institute
of Technology, the Stanford Linear Accelera-

17JANUARY–FEBRUARY 2004

1.2e-05

1.4e-05

1.6e-05

1.8e-05

2e-05

2.2e-05

2.4e-05

0 128 256 384 512 640 768 896 1,024

La
te

nc
y

(s
)

Payload size (bytes)

Figure 7. End-to-end latency. Latency increases linearly with payload size.

tor Center, and Los Alamos National Labo-
ratory, won the “Sustained Bandwidth Award”
(also dubbed the “Moore’s Law Move Over”
award) for demonstrating the best vision and
articulation of the need for high-performance
networks to serve science. The team moved a
total of 6,551.134 gigabits of data, reaching a
peak of 23.23 gigabits per second. Members
of this team from other institutions have also
used other platforms, including Xeon and Ita-
nium2-based systems.

As this article goes to press, we have also
received a pair of 1.0-GHz Intel Itanium2
Deerfield systems for testing. At this time, we
do not have access to the necessary tool chains
to compile optimized versions of our testing
applications, the kernel, or the 10GbE adapter
drivers. Despite these handicaps, the unopti-
mized Itanium2 achieves an impressive 5.14
Gbps with a 9,000-byte MTU and better than
6.0 Gbps with a 16,000-byte MTU. (Because
of the radically different architecture of the
Itanium processor family, we expect dramat-
ic performance increases to result from appro-
priately optimized code.)

Although code optimization is a current
obstacle with the Itanium2, the system’s Per-
formance Monitoring Unit (PMU)5 offers
tremendous potential gains. The PMU is a
processor-based, discrete-event monitor that
measures the occurrences of nearly 500 CPU
activities at both the system and process lev-
els (for example, it includes nearly 200 indi-
vidual counters for various cache activities).

This PMU is a microbenchmarking tool with
unprecedented precision and granularity. We
expect it will let us optimize code for the Ita-
nium2 in ways otherwise unimaginable.

Like the PE2650s, the Itanium2 systems
perform better with an 8,160-byte MTU than
with a 9,000-byte MTU (albeit by a margin of
less than 2 percent). Although we do not
observe this behavior for the Opterons or the
faster Xeons, we do see a leveling off of band-
width between 8,160- and 9,000-byte MTUs,
indicating a performance penalty. In these sys-
tems, however, the penalty is less than the gain
afforded by the larger MTUs. We attribute
this behavior to the Opterons’ and Xeons’
faster FSB (as well as the Opterons’ overall sys-
tem architecture); we expect the Itanium2s to
behave like the Opteron and faster Xeon-
based systems once we have access to opti-
mizing tool chains.

Results analysis
Given that the hardware-based bottleneck

in the Dell PE2650s is the PCI-X bus at 8.5
Gbps, the peak throughput of 4.11 Gbps is
only about half the expected rate. One or
more bottlenecks must therefore exist.

During both transmission and reception,
packets follow fairly well-defined paths. When
transmitting a packet, the CPU copies the
packet from a user-space memory buffer to a
kernel-space memory buffer (requiring two
transfers across the memory bus). The DMA
controller then copies the packet across the
PCI-X bus to the 10GbE adapter, which sends
it to the remote system (requiring a third copy
across the memory bus). The receiving
adapter at the remote system performs the
reverse operation to receive the packet. Figure
8 shows the path for receiving a packet.

This path has at least five possible bottle-
necks: the adapter, the PCI-X bus, the mem-
ory bus, the FSB, and the CPU. In looking
for the bottleneck, we first consider the most
external elements of each computing node—
the 10GbE adapter and PCI-X bus—and
progress inward toward the CPU.

10GbE adapter and PCI-X bus
Because the 10GbE adapter card, rated at

up to 10.3 Gbps, achieved over 10 Gbps of
throughput in independent tests, we dismiss
it as a bottleneck. The PE2650’s PCI-X bus

18

HOT INTERCONNECTS 11

IEEE MICRO

(PCI-X bus)

CPU

Network interface card
(10GbE)

Memory

User-space

Kernel-space

Figure 8. Packet path from the adapter to application. On
receiving a packet, the 10GbE adapter copies the packet to
kernel memory via the DMA controller. The CPU then
copies the data into the user application’s memory space.

is also not a bottleneck, as we confirm through
two sets of tests.

For the first set of tests, we force the 133-
MHz PCI-X slot to run at 100 MHz by
installing the card on a PCI-X bus that it shared
with another PCI-X card. This reduces the
effective bandwidth of the PCI-X bus to at most
6.4 Gbps, but it did not affect our test results.

For the second set of tests, we install two
10GbE cards in a single PE2650 but on sep-
arate PCI-X buses. We multiplex multiple
TCP streams over each card, and therefore
each bus, thereby eliminating any bottleneck
that a single bus imposed. Multiplexing GbE
flows across both 10GbE adapters yields
results that are statistically identical to those
obtained when multiplexing GbE flows over
a single 10GbE adapter, indicating that the
bus is not limiting the throughput.

Memory bus and FSB
Using the Dell PE4600s, we determine that

memory bandwidth is not a likely bottleneck
either. The PE4600s use the GC-HE chipset,
offering a theoretical memory bandwidth of
51.2 Gbps. The Stream memory benchmark
reports 12.8-Gbps memory bandwidth on
these systems, nearly 50 percent better than
that of the Dell PE2650s. Despite this high-
er memory bandwidth, we observe no increase
in network performance. These tests are
inconclusive, however, because of the archi-
tectural differences between the PE2650s and
PE4600s.

Tests run on the 2.66- and 3.02-GHz Intel
Xeon machines confirm our conclusion that
memory bandwidth is not a bottleneck. The
Stream results for these machines are within a
few percent of the PE2650’s results. With a
throughput of better than 4.6 Gbps, these
machines produce more than 13 percent high-
er throughput than the PE2650s do, howev-
er. The difference in memory bandwidth
cannot account for this disparity.

Furthermore, these systems saw roughly
equal performance increases over the PE2650s
despite their disparate clock rates. Because the
performance increase cannot be attributed to
the memory bandwidth or clock rate, the per-
formance boost arises primarily from the sys-
tems’ 533-MHz FSB as the FSB is the only
other substantial architectural difference
between these systems.

While the bandwidths of the FSB and mem-
ory bus are related, they are not the same. The
FSB connects the CPU to the memory bus,
and therefore, provides an upper bound on the
transfer rate between the CPU and memory.
The memory bus, however, is shared between
the CPU and other bus master devices (includ-
ing, for instance, the 10GbE adapter). It can
therefore attenuate the transfer rate to less than
what the FSB supports.

CPU
In all of our experiments, the CPU load

remains low enough to suggest that the CPU
is not a primary bottleneck. Moreover, dis-
abling TCP time stamps yields no increase in
throughput (disabling time stamps gives the
CPU more time for TCP processing and
should therefore yield greater throughput if
the CPU were a bottleneck). Empirically, we
ran applications with low to medium CPU
load without losing significant throughput.

CPU load, however, might not be the
appropriate metric for uncovering a CPU as a
bottleneck. Multiple points along the Linux
TCP’s send and receive path could allow the
kernel to omit TCP processing time from the
load computation. Furthermore, bulk data
transfers have a high context-switching rate,
which can artificially deflate the computed
average load.

We cannot determine that the CPU is the
bottleneck until we can demonstrate that it is
computationally saturated (which it is not).
If the CPU causes TCP to stall, it is not due
to computational tasks but rather inefficient
CPU utilization—for example, it might be
blocking on noncomputational tasks.
Microbenchmark analyses can help determine
where the CPU is spending time.

In the absence of such microbenchmark
analyses, we rely on previous experiences with
high-performance interconnects1,6 and spec-
ulate that intercomponent latencies limit the
throughput. Specifically, inefficient cache uti-
lization in reading packets from main mem-
ory causes CPU blocking. The performance
of the 2.66- and 3.02-GHz Xeon systems sup-
ports this conclusion.

Short fat network considerations
As we discussed earlier, throughput can dip

sharply for large MTU bandwidth. Specifi-

19JANUARY–FEBRUARY 2004

cally, for a 9,000-byte MTU, we see a dip in
throughput between payload sizes of 7,436
and 8,948 bytes, preceded by a jump at about
6,272 bytes. We eliminate these dips by set-
ting the window size to be many times the size
of the bandwidth-delay product. This solu-
tion, however, is only a workaround; it does
not identify the problem’s source, let alone fix
it. Moreover, the solution is contrary to com-
mon wisdom about optimizing TCP/IP.

The TCP/IP community focuses more
often on high-latency, high-bandwidth net-
work connections—long fat networks
(LFNs)—than on low-latency, high-band-
width networks—short fat networks (SFNs).
A common optimization for LFNs sets the
window size to be at least as large as the band-
width-delay product.7,8 However, setting too
large a window wastes memory and can
severely affect throughput by allowing the
sender to overrun the link capacity.

Comparatively little work on optimizing
SFNs exists. In this study, we find that opti-
mizing TCP for SFNs requires a semantical-
ly different heuristic than optimizing TCP for
LFNs. Specifically, we find that using large
MTUs in SFNs causes the erratic behavior
observed with large MTUs and small (though
theoretically appropriate) windows. Or more
precisely, problems arise when the MTU is
large relative to the window size. As the MTU
grows, each packet consumes more of the win-
dow and receiver buffer, reducing the possi-
ble values for the sender’s congestion window
and creating modal behavior in the receiver’s
advertised window.

Figure 9 demonstrates how such a problem

arises on the sender side. Given 4.1-Gbps
throughput and 25-µs latency, we have a the-
oretical bandwidth-delay product of 26
Kbytes. Because most modern TCP imple-
mentations, including Linux’s, force the align-
ment of the congestion window with the
MTU’s payload size, when we try to saturate
an SFN with 9,000-byte packets, we can only
fit two complete packets into the SFN pipe
before we overrun the capacity. The result is
a nearly 33 percent throughput loss. Although
this example is extreme, it appears to be exact-
ly the case (albeit with 16,000-byte MTUs)
that limits bandwidth when running without
“over-sizing” the TCP windows.

Even more bizarre is the receive side’s behav-
ior. The Linux kernel uses a window adver-
tisement approach that is designed to limit
the bandwidth when buffer space is at a pre-
mium. This gives the kernel time to allocate
memory to buffers while under memory pres-
sure. A large MTU reduces the possible
amount of free memory, as with the conges-
tion window, making it easy for the kernel to
become stuck trying to free more buffer space
than the bandwidth-delay product will allow.

In our tests, this behavior is intrinsic to the
Linux kernel, especially given the buffer-auto-
tuning functionality of the 2.4 kernel series. In
addition, a source-code examination of the
BSD (Berkeley Software Distribution) stack
leaves us certain that analogous behavior
would occur there. In fact, we expect every
TCP stack to have similar provisions, and thus
similar behavior.

Further research should determine the best
heuristics for working with SFNs. We antici-
pate that possible solutions will involve sizing
the MTU to maximize the number of seg-
ments that can fit in a window; such solutions
should be compatible with TCP on both the
sender and receiver.

The SFN problem originally manifested
itself in our work with TCP over Quadrics
QsNet. The problem is far more significant
in this 10GbE study, and we expect it to wors-
en in SFNs as latency continues to decrease,
bandwidth increases, and MTU size increas-
es.

Ongoing work
10GbE fits seamlessly into existing infra-

structures, working equally well in LAN, sys-

20

HOT INTERCONNECTS 11

IEEE MICRO

Best possible
window

due to MTU

Theoretical
(~26 Kbytes)
or advertised

window

~9,000
MTU

~9,000
MTU

~9,000
MTU

Figure 9. Small window versus large MTU. The Linux TCP
implementation forces the congestion window to align with
the MTU payload size.

tem-area network, MAN, and WAN environ-
ments and not requiring modification to exist-
ing code or adopting proprietary software
interfaces. Although 10GbE is currently the
most expensive interconnect, it will not be for
long: Prices will continue to decrease expo-
nentially with the imminent arrival of next-
generation 10GbE cards, which use
less-expensive multimode optics, and soon,
copper. (Ironically, the adoption of a copper
interface could benefit InfiniBand at least as
much as 10GbE. Because the two intercon-
nects will share the same cabling standard, the
increased production volume of 10GbE inter-
faces will probably lower the cost of InfiniBand
far more than InfiniBand manufacturers could
hope for on their own.) In addition, switch
providers are now offering multiport 10GbE
modules and the soon to be available next-gen-
eration switch architectures will bring inex-
pensive layer-2 switching to the 10GbE
market.9

We anticipate that the remaining perfor-
mance gaps among Ethernet, InfiniBand, and
Quadrics will close significantly within the
next year. From a throughput perspective, the
IETF’s Remote Direct Data Placement
(RDDP) effort seeks to translate RDMA’s suc-
cess (over interconnects such as InfiniBand
and Quadrics) to Ethernet, thus eliminating
Ethernet’s last obstacle—that is, the host-
interface bottleneck, to high throughput and
low processor utilization. From a latency per-
spective, all the high-speed interconnects will
soon run into speed-of-light limitations.

We are currently continuing this work
on several fronts. Principally, we are

working on microbenchmarking TCP over
10GbE. Using Magnet, we are instrumenting
the Linux TCP stack and performing per-
packet profiling and tracing of the TCP stack’s
control path. Magnet lets us profile arbitrary
sections of the stack with CPU clock accura-
cy while 10GbE stresses the stack with previ-
ously unfathomable loads. Analysis of this
data will provide our research community
with an extraordinarily high-resolution pic-
ture of the most expensive aspects of TCP pro-
cessing.10 In addition, we are also investigating
hardware-level microbenchmarking using the
PMU on Intel’s Itanium2 processors.

Although a better understanding of current

performance bottlenecks is essential, our expe-
rience with Myrinet and Quadrics (see the
“Putting the 10GbE Numbers in Perspective”
sidebar) leads us to believe that an operating-
system-bypass (OS-bypass) protocol imple-
mented over 10GbE would simultaneously
result in throughput capable of saturating the
bus bottleneck (that is, 7 to 8 Gbps) with end-
to-end latencies well below 10 µs while keep-
ing CPU utilization low. However, because
high-performance OS-bypass protocols require
an on-board (programmable) network proces-
sor on the adapter, Intel’s 10GbE adapter cur-
rently cannot support such a protocol. MICRO

Acknowledgments
We thank the Intel team—Matthew Baker,

Patrick Connor, Caroline Larson, Peter Mol-
nar, Marc Rillema, and Travis Vigil of the
LAN Access Division—for their support of
this effort and Eric Weigle for his assistance
throughout this project. This work was sup-
ported by the US DOE Office of Science
through Los Alamos National Laboratory
contract W-7405-ENG-36.

References
1. N. Boden et al., “Myrinet: A Gigabit-Per-

Second Local Area Network,” IEEE Micro,
vol. 15, no. 1, Jan.-Feb. 1995, pp. 29-36.

2. F. Petrini et al., “The Quadrics Network:
High-Performance Clustering Technology,”
IEEE Micro, vol. 22, no. 1, Jan.-Feb. 2002,
pp. 46-57.

3. M.K. Gardner et al., “Magnet: A Tool for
Debugging, Analysis, and Reflection in
Computing Systems,” Proc. 3rd IEEE/ACM
Int’l Symp. Cluster Computing and the Grid
(CCGrid 2003), IEEE Press, 2003, pp. 310-317.

4. G. Hurwitz and W. Feng, “Initial End-to-End
Performance Evaluation of 10-Gigabit
Ethernet,” Proc. Hot Interconnects 11 (HotI
2003), IEEE CS Press, 2003, pp. 116-122.

5. Introduction to Microarchitectural Optimiza-
tion for Itanium2 Processors, Intel Corp.;
http://www.intel.com/software/products/
vtune/techtopic/software_optimization.pdf.

6. D. Tolmie et al., “From HiPPI-800 to HiPPI-
6400: A Changing of the Guard and Gateway
to the Future,” Proc. 6th Int’l Conf. Parallel
Interconnects (PI 1999), IEEE CS Press,
1999, pp. 194-204.

7. A. Engelhart, M.K. Gardner, and W. Feng,

21JANUARY–FEBRUARY 2004

“Re-Architecting Flow-Control Adaptation
for Grid Environments,” to appear in Proc.
18th Int’l Parallel and Distributed Processing
Symp. (IPDPS 04), IEEE CS Press, 2004.

8. W. Feng et al., “Automatic Flow-Control
Adaptation for Enhancing Network
Performance in Computational Grids,” J. Grid
Computing, vol. 1, no. 1, 2003, pp.63-74.

9. T. Shimizu et al., “A Single Chip Shared
Memory Switch with Twelve 10Gb Ethernet
Ports,” presented at Hot Chips (HotC 2003),
datasheet available at http://edevice.fujitsu.
com/fj/MARCOM/find/21-4e/pdf/36.pdf.

10. D. Clark et al., “An Analysis of TCP
Processing Overhead,” IEEE Comm., vol.
27, no. 6, June 1989, pp. 23-29.

Justin (Gus) Hurwitz is a member of the
Research and Development in Advanced Net-
work Technology (Radiant) team in the Com-
puter and Computational Sciences Division at
Los Alamos National Laboratory. His research
interests include protocol and operating-sys-
tem design for high-performance networking
and general approaches to fair utilization and
optimization of finite resources. Hurwitz has a
bachelor’s degree in liberal arts from St. John’s

College and will pursue graduate degrees in
intellectual property and constitutional law and
computer science starting this fall.

Wu-chun Feng is a technical staff member and
team leader of the Research and Development
in Advanced Network Technology (Radiant)
team in the Computer and Computational
Sciences Division at Los Alamos National Lab-
oratory and a fellow of the Los Alamos Com-
puter Science Institute. His research interests
include high-performance networking and
computing, network protocols and architec-
ture, bioinformatics, and cybersecurity. Feng
has a BS in electrical and computer engineer-
ing and music; and an MS in computer engi-
neering from Pennsylvania State University.
He has a PhD in computer science from the
University of Illinois at Urbana-Champaign.
He is a member of the IEEE and the ACM.

Direct questions and comments about this article
to Gus Hurwitz, Computer and Computational Sci-
ences Division, Los Alamos Nat’l Lab., PO Box
1663, MS D451, Los Alamos, NM 87545;
ghurwitz@lanl.gov.

22

HOT INTERCONNECTS 11

IEEE MICRO

Get access
to individual IEEE Computer Society

documents online.

More than 67,000 articles

and conference papers available!

US$9 per article for members

US$19 for nonmembers

http://computer.org/publications/dlib/

