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ABSTRACT
The fast Fourier transform (FFT), a spectral method that
computes the discrete Fourier transform and its inverse, per-
vades many applications in digital signal processing, such as
imaging, tomography, and software-defined radio. Its impor-
tance has caused the research community to expend signifi-
cant resources to accelerate the FFT, of which FFTW is the
most prominent example. With the emergence of the graph-
ics processing unit (GPU) as a massively parallel computing
device for high performance, we seek to identify architecture-
aware optimizations across two different generations of high-
end AMD and NVIDIA GPUs, namely the AMD Radeon
HD 6970 and HD 7970 and the NVIDIA Tesla C2075 and
K20c, respectively, to accelerate FFT performance.

Despite architectural differences across GPU generations
and vendors, we identify the following optimizations, when
applied individually and in isolation of one another, as be-
ing the most effective in accelerating FFT performance: (1)
register preloading, (2) transposition via local memory, and
(3) 8- or 16-byte vector access and scalar arithmetic. We
then demonstrate the efficacy of combining individual opti-
mizations together and find that the most effective combi-
nation of optimizations across all architectures encompasses
register preloading, transposition via local memory, and use
of constant memory. Our study suggests that FFT per-
formance on GPUs is primarily limited by global memory
data transfer. Overall, our optimizations deliver speed-ups
as high as 31.5 over a baseline GPU implementation and
9.1 over a multithreaded FFTW CPU implementation with
AVX vector extensions.

1. INTRODUCTION
The FFT has been identified as a key computational id-
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Figure 1: Survey of FFT libraries for state-of-the-
art CPU and GPU hardware for a single-precision
batched 1D 16-pt FFT for 128 MB. CUFFT and
AMD APPML are vendor provided libraries for
NVIDIA and AMD GPUs, respectively. AppleFFT
is an open-source FFT library designed for NVIDIA
GPU architectures exclusively.

iom for present and future applications and is central across
a wide range of fields such as cognitive radio, digital sig-
nal processing, and encryption [2, 13, 18, 20]. Its impor-
tance has caused the research community to expend sig-
nificant resources to accelerate the FFT, of which FFTW
is the most prominent example. The constant demands
for high performance, however, have caused a shift towards
accelerator-based processors such as GPUs to further im-
prove FFT performance. Recent work has demonstrated
substantial speedups for FFT on GPUs [3–5, 7, 8, 10–12, 15,
16, 19]. To magnify the gap between CPU and GPU FFT
performance, we surveyed several GPU FFT libraries in ad-
dition to FFTW. Figure 1 compares the performance across
vendor libraries (AMD APPML and NVIDIA CUFFT) and
vendor-neutral codes (AppleFFT, FFTW) for commodity
CPU and GPU hardware.

Vendor GPU libraries fare well for their respective archi-
tectures, while vendor-neutral libraries such as AppleFFT
(which was designed for the NVIDIA GPU architecture)
provide superior performance on NVIDIA cards and reason-
able performance for AMD. In short, GPU-accelerated FFT
codes outperform FFTW-based solutions by factors as high
as 6.8.

To address the need for high performance while maintain-
ing portability to any device, this work seeks to develop
an architecture-agnostic FFT library, similar to FFTW. To
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date, very little work has focused on the portable perfor-
mance of FFT across heterogeneous processors. In order to
develop such a library, (1) a multi-dimensional characteriza-
tion of optimizations and their interactions is necessary to
harness the computational power of a target architecture,
and (2) an auto-tuning framework is required to empirically
determine optimal cutoff values for sweepable parameters.

Related work has demonstrated the efficacy of auto-tuning
FFT on GPUs but lack rigorous characterization of the opti-
mizations and their effects on machine-level behavior. There-
fore, we seek to identify optimal optimization sequences for
FFT across two generations of AMD and NVIDIA GPUs.
The contributions of our work are as follows:

• Optimization principles for FFT on GPUs

• An analysis of GPU optimizations applied in isolation
and in concert on AMD and NVIDIA GPU architec-
tures

Due to radical architectural differences across GPU gen-
erations and vendors, we expected a diverse set of optimiza-
tions per target architecture. However, our results indicate
that one unique optimization sequence is most effective in
accelerating FFT performance: (1) register preloading, (2)
transposition via local memory, and (3) 8 or 16-byte vec-
tor access and scalar arithmetic. We then demonstrate the
efficacy in combining certain optimizations in concert with
register preloading, transpose via local memory, and use of
constant memory being the most effective for all architec-
tures. Our study suggests that after extensive optimization,
performance of FFTs on graphics processors is primarily lim-
ited by global memory data transfer.

The rest of this paper is summarized as follows. Section 2
provides an overview of FFT, OpenCL, and terminology we
have adopted in this paper. Section 3 presents the opti-
mizations that we have applied to the GPU cores. Section 4
summarizes and discusses our results. Section 5 discusses
related work. Finally, Section 6 presents our conclusions.

2. BACKGROUND

2.1 The Fast Fourier Transform (FFT)
The FFT is part of a family of computations known as

spectral methods. A spectral method transforms data from
continuous time and space to an equivalent discrete form.
Spectral method computations are characterized by multiply-
add operations known as butterfly computations. The com-
munication pattern requires local or global all-to-all synchro-
nization between executing units depending on the trans-
form size. The FFT is the canonical spectral method, but
many other transforms exist. Improvements in one method
will ultimately lead to improvements for the whole family of
spectral methods.

Our mapping strategy is based on the Cooley-Tukey frame-
work, where an N -pt FFT is arranged as size N1 ×N2. We
apply a variant of the canonical four-step method [10, 19].
Assuming data is in row-major order, the four steps are: (1)
FFT on columns, (2) twiddle multiplication, (3) transpose,
and (4) FFT on columns. Figure 2 shows an example of the
four-step method applied to a 16-pt FFT.

FFT on Columns. The original N-pt FFT is represented
as a N1 × N2 matrix in row-major order. N2 radix-N1

FFTs are performed on the columns. These subtransforms
of radix-N1 FFTs are calculated directly by each thread us-
ing a decimation-in-frequency approach.

Twiddle Multiplication. Twiddle multiplication is char-
acterized by point-wise multiplication of all input elements
by a predefined constant, or twiddle factor. The twiddle

factor at row i and column j is e
−2πij
N .

Transpose. The transpose stage represents an all-to-all
synchronization between threads in a single batch. Elements
must exchange data along the main diagonal. Formally, for
each element in matrix X, Xij must swap with element Xji.

2.2 OpenCL Programming Model & Termi-
nology

OpenCL is a high-level API specification for programming
heterogeneous processors. OpenCL’s strength is functional
portability; users simply write code once and execute on a
highly diverse set of processors from CPUs to FPGAs. Its
generality and applicability as a vendor-agnostic language
allows for execution across processors; however, performance
is not necessarily portable. Since OpenCL accommodates a
broad set of devices, vendor support for special instructions
is limited. Most notably, features in CUDA 5.0 such as the
shuffle intrinsic, an instruction for intra-wavefront exchange
of register data, are not supported in OpenCL. We use the
following OpenCL terminology throughout this work. A
work item is an autonomous unit of execution on the GPU.
Work items are partitioned into work groups. Work groups
are coarse units for scheduling into compute units (CU). Ar-
chitecturally, CUs contain groups of many cores known as
processing elements (PE). Finally, a wavefront is the atomic
unit of execution for the GPU. In this work, wavefronts from
NVIDIA and AMD architectures execute in lockstep.

OpenCL contains several memory spaces: global, texture,
constant, local, private. We describe these memory spaces
in the context of a GPU. Global memory is a slow DRAM
readable and writable by any CU. Texture memory is cache-
accelerated global memory for memory textures. The con-
stant memory is a small, cached memory for frequently used
data. Local memory1 is a fast, on-chip scratchpad memory
for work items to coordinate. Finally, private memory is
on-chip registers.

3. APPROACH
In the context of the FFT, our work seeks to uncover ar-

chitectural insights on two generations of NVIDIA and AMD
GPUs via optimizations applied in isolation and in concert.
The FFT was evaluated in three sample sizes: 16-, 64-, and
256-points which naturally fit the capacity of on-chip mem-
ories such as registers and local memory. We then evaluated
a larger, out-of-core 2D FFT of size 256×256 to validate our
optimization strategies for FFTs beyond the capacity of on-
chip memories. Finally, we evaluated shuffle, a poorly under-
stood mechanism endemic to NVIDIA Tesla Kepler GPUs
that allows for intra-warp communication without the use
of shared memory. All implementations are single-precision
floating point and validated with a double-precision CPU
code.

1OpenCL local memory should not be confused with CUDA
local memory which is a slower, intermediate memory for
register spills in CUDA architectures.
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Figure 2: The four-step method applied to a 16-pt FFT. Input is organized in row-major order. In (a), 4
radix-4 FFTs are performed on columns. The twiddle multiplication stage is shown in (b) where a point-wise
multiplication is performed on each element of the input array. The transpose step occurs in (c) where
elements across the diagonal are exchanged. An arrow depicts one swap between element a1 and a4. Finally,
FFT on columns are performed again in (d). The output is the FFT of the original array, organized in
row-major order.

3.1 Baseline Implementation
A baseline kernel represents an unoptimized, naive kernel

typically implemented as a first resort for evaluating the ef-
ficacy of an algorithm on the GPU. Our optimizations are
applied relative to the baseline kernel. We systematically
apply optimizations one by one to the baseline kernel (e.g.,
optimizations in isolation) to gain insight on how each op-
timization interacts with machine-level behavior. We then
apply optimizations in combination (e.g., optimizations in
concert) based on the insights gained from the results in
isolation. It is important to note that the baseline kernel is
configured to (1) utilize all GPU cores by computing mul-
tiple transforms, (2) performs 8-byte vector access, scalar
math (VASM2), and (3) performs all computation and com-
munication operations on global memory. We discuss the
optimizations applied to the baseline kernels for 16-, 64-,
and 256-points in the 1D case and 256× 256 in the 2D case.

3.2 Shuffle (Transpose) Optimization
Architecture-aware optimizations target specific hardware

mechanisms of a processor. For instance, NVIDIA intro-
duced a novel mechanism for register-to-register exchange
within work items in a wavefront in their latest Tesla K20c
GPU. Traditionally, communicating data between work items
require a shared, scratchpad memory. This new mechanism,
known as shuffle, allows intra-wavefront register exchange
without using local memory. Since the FFT requires a com-
munication step between work items akin to matrix trans-
pose, we leveraged shuffle to eliminate the need for scratch-
pad local memory. Our shuffle algorithm which performs
matrix transpose entirely on registers is as follows.

Given a NxN matrix, where each thread, ti contains one
column of the matrix. Then, for each thread ti for 0 ≤ i <
N , perform the following steps:

1. Horizontal Rotation. Perform data rotation row-
wise via inter-thread shuffle. Data in row k of column
i will be assigned to row data from (i+N−k) mod N .

2. Vertical Rotation. Perform data rotation column-
wise within a thread. Data in row k of column i will
be assigned to column data from (i + k) mod N .

3. Horizontal Rotation. Perform data rotation row-
wise via inter-thread shuffle. Data in row k of column
i will be assigned to row data from (N+k−i) mod N .

Figure 3 illustrates our shuffle algorithm. Steps 1 and 3

(horizontal rotation) require inter-thread communication us-
ing the shuffle mechanism, and step 2 (vertical rotation) re-
quires movement within a thread’s own register file. We will
demonstrate later that effective use of shuffle hinges on the
treatment for the vertical rotation stage. The primary is-
sue is a priori indexing [6]. The compiler must know the
source and destination indexing at compile time; if not, the
compiler is forced to allocate a region of memory known as
CUDA local memory which is significantly slower than GPU
registers. We will further address this issue in the results.

3.3 System-level Optimizations
A system-level optimization is applicable to any applica-

tion. The following is a list of system-level optimizations
that have been applied.

Run Many Work Items. The GPU is a massively
multi-threaded throughput machine. A large number of
work items must be launched in order to hide long-latency
global memory operations. Wavefronts can context switch
during a stall for global memory transactions. An abun-
dance of wavefronts can effectively hide memory latency.
We apply this optimization through batching. All imple-
mentations process 128 MB of single-precision transforms
over application execution. This size is enough to saturate
all compute units in our experimental testbed.

Use On-Chip Memory. The aggregate bandwidth for
on-chip memory is roughly two orders of magnitude higher
than global memory. Table 1 lists the read bandwidths for
on-chip and global memories for Radeon HD 6970. Further-
more, effectively staging computation and communication
operations in on-chip memory significantly improves appli-
cation performance because it avoids multiple passes in long-
latency global memory. Additional on-chip memories such
as the limited capacity local data share provide scratchpad
memory visible to all work items in a work group. Our op-
timized versions make use of the register file (RP) and local
memory (LM) for computation, communication, or both.

Table 1: Memory Read Bandwidth for Radeon 6970
Functional Unit Read Bandwidth (TB/s)

Registers 16.2
Constant Memory 5.4
Local Data Share 2.7
Global Memory 0.17

Organize Data In Memory. Efficient data layouts are
essential for optimized memory transactions. A reorganiza-
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Figure 3: Our shuffle algorithm applied to a 16-pt FFT. The FFT’s data communication stage (matrix
transpose) is performed entirely in registers

.

tion in memory can yield more efficient transaction transfers
in hardware. A worst-case scenario occurs when irregular ac-
cess patterns result in many small incongruous transactions.
In our unoptimized implementation of sample size N , sets
of
√
N threads access memory contiguously. However, the

stride between sets of threads is N which results in poor
accesses. Our optimized version (CGAP) reorganizes mem-
ory for coalesced accesses. The kth thread accesses memory
element k in a wavefront.

Reduce Dynamic Instruction Count. While it is tra-
ditionally important to reduce dynamic instruction count,
there is no guarantee that the GPU compiler will automat-
ically apply these optimizations. Some examples include
common subexpression elimination, loop unrolling, and func-
tion inlining. We take advantage of these optimizations by
explicitly programming them in our kernels. We performed
loop unrolling (LU) for memory loads and stores, inlined
(IL) kernel helper functions, and reordered computation to
eliminate common subexpressions (CSE).

Use Constant Memory. Constant memory provides
cached performance and lower latency relative to device global
memory. For commonly accessed data elements, the cached
constant memory is an excellent candidate for performance
improvement. Constant memory is limited in capacity, so
it is best suited for a small set of frequently accessed data.
We implemented both kernel argument (CM-K) and kernel
literal (CM-L) optimizations for constant memory [1].

Use Vector Types. Data layout in FFT is represented
in interleaved or planar format. Elements are ordered as a
float2 {real, imaginary} pair in the interleaved format, while
real and imaginary parts are allocated in separate float ar-
rays for the planar format. The interleaved format allows
for vector access, scalar math (VASM), while the planar for-
mat allows for vector access, vector math (VAVM). Ideally,
the planar format should be used in AMD VLIW architec-
tures as this significantly improves the co-issue packing size
at compile time by providing increased instruction-level par-
allelism.

Our baseline implementation uses an interleaved float2
format (VASM2). We vary the vector size in powers of two
for both interleaved and planar. Optimized implementations
use vector access/scalar math (VASM) or vector access/vec-
tor math (VAVM). Table 2 depicts the local memory usage
as a function of on-chip memory implementation and vector
size. The increased local memory pressure for larger sam-
ple sizes decreases the effectiveness of larger vector types
(VAVM4, VAVM2, and VAVM4). Local memory implemen-
tations (LM-CC and LM-CT) exhaust the local memory file
thereby reducing the number of active threads in flight.

Table 2: Local Memory Usage per Transform for
Each On-chip Optimization for Sample Size, N

RP+LM-CM LM-CC LM-CT
VASM2 N sz(float) N sz(float2) N sz(float2)
VASM4 N sz(float) N sz(float4) N sz(float4)
VAVM2 N sz(float) 2N sz(float2) 2N sz(float2)
VAVM4 N sz(float) 2N sz(float4) 2N sz(float4)

3.4 Algorithm-level Optimizations
Problem decomposition, assignment, mapping, and or-

chestration is algorithm dependent. Our decomposition, as-
signment, and mapping have been detailed previously (§ 2.1).
However, orchestration of computation and communication
is staged in on-chip memory in a variety of ways.

We split our on-chip memory implementations in three
distinct categories: (1) computation on register file, commu-
nication on local memory {RP + LM-CM}, (2) computation
on local memory, communication in register file {LM-CC},
and (3) computation on local memory, no communication
{LM-CT}. The third implements a technique mentioned
in the work of Volkov and Kazian where a property of the
Cooley-Tukey framework is exploited [19]. The transpose
step is completely eliminated by rearranging the data in
column-major order. Radix-

√
N FFTs and twiddle multi-

plication stages are first applied on the rows followed by
radix-

√
N FFTs on columns. The transformed output is in

column-major order.

4. RESULTS AND DISCUSSION
Here, we provide results and analytical insights for FFT.

Although there are many points of discussion with the re-
sults, we focus only on the salient aspects of FFT. Whenever
possible, we derive metrics to highlight aspects of machine-
level behavior.

4.1 Experimental Testbed and Optimizations
Table 3 depicts the devices used in this study. The Radeon

HD 7970 and the Tesla K20c are the latest GPUs from AMD
and NVIDIA, respectively, and the Radeon HD 6970 and
Tesla C2075 are previous generations, respectively. One no-
table exception in architecture is the VLIW pipeline present
in Radeon HD 6970. In VLIW processors, the burden is
on the compiler to find co-issue opportunities within kernel
code. In Radeon HD 6970, a VLIW instruction is comprised
of four independent microinstructions. If there is insuffi-
cient instruction-level parallelism for an application, execu-
tion units for VLIW processors go idle. For comparison with
a multi-core CPU, we have included a quad-core Intel i5-
2400 CPU running FFTW version v3.3.2. FFTW was con-
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Table 3: Experimental Testbed
Device Cores Peak Global Memory Register Size LDS Size Core Memory Max TDP

Performance Bandwidth per CU per CU Clock Clock
(GFLOPS) (GB/s) (kB) (kB) (MHz) (MHz) (Watts)

Radeon HD 6970 GPU 1536 2703 176 256 32 880 1375 250
Radeon HD 7970 GPU 2048 3788 264 256 64 925 1375 250

Tesla C2075 GPU 448 1288 144 32 48 1147 1666 225
Tesla K20c GPU 2496 4106 208 64 48 705 2600 225

Table 4: List of Optimizations Applied to FFT
Codename Name Description

LM-CT Local Memory Data elements are loaded into local memory for computation. The communication
(Compute, No Transpose) step is avoided by algorithm reorganization [19].

LM-CC Local Memory All data elements are preloaded into local memory. Computation is performed
(Compute, Communicate) in local memory, while registers are used for scratchpad communication.

LM-CM Local Memory Data elements are loaded into local memory only for communication. Threads
(Communicate Only) swap data elements solely in local memory. This optimization requires only

N× sz(float) local memory by transposing each dimension of a floatn
vector one dimension at a time.

CM-{K,L} Constant Memory The twiddle multiplication stage can be pre-computed on the host and stored
{Kernel, Literal} in constant memory for fast look up. This saves two transcendental

single-precision operations at the cost of a cached memory access. CM-K refers to the
usage of constant memory as a kernel argument, while CM-L refers to a static global
declaration in the OpenCL kernel.

RP Register Preloading All data elements are first preloaded onto the register file of the respective GPU.
Computation is facilitated solely on registers.

CGAP Coalesced Global Threads in a wavefront access memory contiguously, e.g. the kth thread accesses
Access Pattern memory element, k.

CSE Common Subexpression A traditional optimization that collapses identical expressions in order to save computation.
Elimination This optimization may increase register live time, therefore, increasing register pressure.

IL (Function) Inlining A function’s code body is inserted in place of a function call. It is used primarily for functions
that are frequently called.

LU Loop Unrolling A loop is explicitly rewritten as an identical sequence of statements without the overhead of
loop variable comparisons.

VASM Vector Access Data elements are loaded as the listed vector type. Arithmetic operations are scalar
{2,4,8,16} Scalar Math (float × float).

float{2,4,8,16}
VAVM Vector Access Data elements are loaded as the listed vector type. The arithmetic operations are vectorized
{2,4,8,16} Vector Math with the sizes listed, (floatn × floatn).

float{2,4,8,16}
SHFL Shuffle The transpose stage in FFT is performed entirely in registers eliminating the

use of local memory. This optimization is only specific to NVIDIA Tesla K20c

figured to utilize four threads on OpenMP with explicit AVX
extensions. FFTW was compiled using gcc v4.4.5. We apply
optimization listed in Table 4 both in isolation and in con-
cert. All results were collected using OpenCL kernel event
timers. For our AMD GPUs, we used Radeon driver v12.10
on a 64-bit Windows 7 machine using AMD APP SDK v2.7.
For NVIDIA GPUs, we used NVIDIA driver 304.54 on a De-
bian Linux machine with kernel 2.6.37.2. Each implemen-
tation processes 128 MB of data, and the average of 1000
kernel iterations was collected.

4.2 Optimizations in Isolation
Figure 4 shows our results in isolation for each stage of

FFT. We applied all optimizations in Table 4 with the ex-
ception of shuffle which is evaluated in concert with other
optimizations.

Timing Methodology. Each data point in Figure 4 is the
summation of each stage, e.g. tisolation = tcols + ttwiddles +
ttranspose. Each stage is a separate kernel invocation and
the sum of all kernel execution time was included.

Trends across FFT stages (in isolation). In general,
the execution time (from greatest to least) is columns, trans-
pose, and twiddles. Optimizations that targetted each stage
specifically was LM-CM and CM-K/-L. Both optimizations

were not effective in isolation.

Trends across GPU architectures (in isolation). NVIDIA
GPUs achieves substantial performance even without ex-
plicit register preloading and local memory usage; in con-
trast, AMD GPUs are critically dependent on applying these
optimizations for high-performance. In general, the effi-
cacy of vector math operations (VAVM) are improved with
the VLIW architecture of the Radeon HD 6970, but these
improvements are meager compared to scalar math opera-
tions. Vector math operations are detrimental to the scalar
GPU architectures (Radeon HD 7970, NVIDIA Tesla C2050,
NVIDIA Tesla K20c).

Global memory bus traffic is the largest performance lim-
iter for AMD GPUs. We define global memory bus traffic as
the number of bytes transferred from off-chip device mem-
ory to on-chip memory. We will refer to this as “bus traffic”.
The optimal bus traffic is the minimum number of memory
load and store operations issued for a kernel. Factors such as
uncoalesced memory accesses, register spills to device mem-
ory, and CUDA local memory allocation may increase bus
traffic. Bus traffic of each kernel was calculated using the
following formula.
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Figure 4: Optimizations applied in isolation to a baseline, unoptimized GPU kernel for for 16-, 64-, and
256-pts on Radeon HD 6970, Radeon HD 7970, Tesla C2075, and Tesla K20c. Comparisons should only be
made within a sample size within an architecture.

Bus Traffic (MB) = 2−20 × (bytesloaded + bytesstored)

where bytesloaded and bytesstored refer to the minimum num-
ber of bytes required to load and store, respectively.2 This
number can be determined statically. For FFT with a prob-
lem size of 128 MB, the minimum bytes loaded and stored
for the columns, transpose, and the twiddles stage are 256
MB, 256 MB, and 240 MB, respectively.3

2In AMD architectures, the profiler counters FetchSize and
FastPath are the total number of kilobytes fetched and
stored in global memory, respectively.
3240 MB for the twiddles stage since elements in the first
row and column are multiplied by unity.

Table 5 depicts the bus traffic of optimizations in isolation
for a 256-pt FFT on AMD Radeon HD 7970. Performance of
AMD architectures is directly related to the total bus traffic.
Minimizing bus traffic was achieved through three on-chip
memory optimizations (RP, LM-CC, LM-CT). These opti-
mizations reduce bus traffic by prefetching off-chip device
memory to on-chip resource with all computation and com-
munication operations computed entirely on-chip. A linear
regression (not shown) for this data comparing performance
and bus traffic yield a strong correlation (R2 = −0.99).

Trends across optimizations (in isolation). VASM2
(baseline) and VASM4 are the optimal vector implementa-
tions with potential improvements in all architectures. We
do not consider vector sizes larger than 16 bytes. In par-
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Table 5: Global memory bus traffic for results in isolation for FFT256 in AMD Radeon HD 7970. This table
shows the number of bytes transferred (in megabytes) and the relative traffic (x) compared with the ideal
bus traffic. The bolded cells depict optimal bus traffic.
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(MB / x) 11x 11x 11x 11x 13x 17x 30x 25x 13x 13x 15x 13x 1x 9x 1x 1x 11x

Transpose 623 653 642 623 392 277 305 490 658 429 337 1189 783 747 255 255 661
(MB / x) 2x 3x 3x 2x 2x 1.08x 1.19x 2x 3x 2x 1.31x 5x 3x 3x 1x 1x 3x
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(MB / x) 1x 1x 1x 1x 1x 1.19x 1.59x 1.40x 1x 1x 1.14x 1x 1.06x 1x 1.06x 1.06x 1x

ticular, VAVM16 is the worst vector access and arithmetic
type.

CGAP generally improves performance across all archi-
tectures. The efficacy of this optimization is clearer when
combined later with on-chip implementations. CSE/IL/LU
optimizations have little to no effect to the baseline for each
architecture, and we no longer consider these optimizations
in concert. There is little difference between CM-K and
CM-L. Constant memory is not as effective in isolation due
to computation on the global memory. In concert with on-
chip memory implementations, using constant memory for
the twiddle calculation is helpful by saving two transcen-
dental operations and a floating point multiplication for a
cached global memory access

4.3 Optimizations in Concert
Figures 5 depict optimizations applied in concert for Radeon

HD 6970, Radeon HD 7970, NVIDIA Tesla C2075, and
NVIDIA Tesla K20c. We varied on-chip optimizations, and
vector types. All implementations are coalesced (CGAP)
and make use of constant memory (CM-K).

Timing Methodology. We timed both the kernel compute
time and the kernel memory load and store time. Each data
point is calculated using the following scheme:

tconcert = tcompute + tmem

tcompute =

{
toverall − tmem, if toverall − tmem > 0

0, if toverall − tmem < 0

where tcompute is the time it takes to perform the compu-
tation only (excluding memory transfers), tmem represents
the time it takes to transfer from off-chip global memory
to on-chip resources and back, tconcert is the actual plotted
value in Figure 5, and toverall is the time it takes to per-
form the computation and global memory loads to on-chip
resources and back. We acknowledge that register alloca-
tions will fluctuate between tmem and toverall which could
potentially decrease occupancy (and skew execution time).
Nevertheless, this timing methodology is here to illustrate
the relative differences between kernel execution and global
memory load and store time.

Trends across GPU architectures (in concert). First,
the VLIW pipeline of Radeon HD 6970 handles vector access
vector math (VAVM) computations more efficiently than the
scalar pipelines present in the rest of the GPUs. The VAVM

optimization showed an increase in the VLIW packing ratio
of Radeon HD 6970 compared to VASM optimizations.

We note that global memory loads and stores contribute a
majority of the overall execution time for all sample sizes on
all architectures. In the most optimal implementations, the
computation is completely overlapped with memory trans-
fers. Therefore, the algorithm becomes memory bound and
architectures with higher global memory bandwidth deter-
mines the overall performance of the FFT. The average
achieved global memory bandwidth for implementations in
concert for the Radeon HD 6970, HD 7970, Tesla C2075,
and Tesla K20c are 136± 5, 183± 11, 94± 13, and 139± 20
GB/s, respectively.

Trends across optimizations (in concert). RP + LM-
CM consistently provided best performance improvement
across all devices in all vector types. RP + LM-CM is the
most efficient on-chip implementation in terms of local mem-
ory usage as shown in Table 2. The transpose step is un-
rolled for each component of the vector saving precious local
memory space by a factor related to the vector size.

In isolation, constant memory provided little to no per-
formance improvement, however, our analysis in concert in-
dicates that computing the twiddle stage on-the-fly (via ex-
plicit transcendental calculations) introduced kernel execu-
tion overhead. Applying constant memory optimizations
(CM) eliminated this overhead and improved performance
for all sample sizes.

The best combination makes use of the following opti-
mizations: register preloading and transpose via local mem-
ory (RP+LM-CM), coalescing global access (CGAP), and
use of constant memory. The optimal vector size for all ar-
chitectures is vector access, scalar math (VASM) with 8 or
16-byte words. Finally, computing values on local memory
(LM-CC, LM-CT) introduce overheads relative to RP and
the differences between the two optimizations are negligible.

4.4 Shuffle Optimization on K20c
Figure 6 depicts our results for the shuffle mechanism

for a 256-pt FFT on NVIDIA Tesla K20c. Communication
(shown in gray) refers to the local transpose stage within an
FFT, while computation refers to stages in the FFT that re-
quire arithmetic (e.g., twiddles and FFT on columns). LM-
CM represents a point of reference in which local mem-
ory is used to communicate data between threads. Naive
represents our initial shuffle code. We discovered that the
naive implementation suffers from heavy usage of CUDA
local memory, a slower memory region typically allocated
in the L1 cache or global memory. To mitigate this is-
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Figure 5: Optimizations applied in concert to a baseline, unoptimized GPU kernel for for 16-, 64-, and 256-pts
on Radeon HD 6970, Radeon HD 7970, Tesla C2075, and Tesla K20c. Note: coalesced global access pattern
(CGAP) and constant memory kernel literal (CM-K) was applied to the data points listed. Comparisons
should only be made within a sample size within an architecture.

sue, we introduced code divergence (e.g., DIV) to ensure
a priori indexing (see § 3.2). Divergence is typically consid-
ered bad programming practice, but the cost of divergence
is subsumed by the greater cost of CUDA local memory al-
location and usage. Application of the CUDA selection and
comparison PTX instruction, an instruction that allows for
predicated stores of data values, in SELP reduced the diver-
gence associated with DIV. SELP was applied entirely in-
place (e.g., IP) or out-of-place (e.g., OOP). SELP IP uses
the least number of registers than LM-CM allowing it to

execute at a much higher occupancy rate yielding an aggre-
gate improvement in both computation and communication.
Overall, our shuffle optimization improves the performance
of FFT by an additional 1.17-fold.

4.5 2D FFT
To demonstrate the portability of our optimizations for

larger FFT sizes, we evaluated an out-of-core FFT that ex-
ceeds on-chip memory capacity. We applied the best com-
bination of optimizations from the 1D case and applied it
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Figure 6: Results for shuffle mechanism applied to
a 256-pt FFT.

to a 2D FFT of size 256 × 256 and juxtaposed its unopti-
mized, baseline counterpart. Optimized refers to (1) register
preloading, (2) transposition via local memory, (3) coalesced
global memory accesses, (4) 8-byte vector access and scalar
arithmetic, and (5) constant memory usage, while unopti-
mized means usage of 8-byte vector access and scalar arith-
metic only. Figure 7 demonstrates these results.

The performance gap between highly optimized, hand-
tuned codes to an unoptimized version is known as the ninja
gap [17]. This gap is much more pronounced for AMD GPUs
suggesting that architecture-aware optimization is critical to
fully harness the computational potential of AMD hardware.
This gap is lesser for NVIDIA GPUs retaining much of its
performance characteristics without explicit optimization.
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Figure 7: Optimizations applied to a larger 2D FFT
of size 256× 256

5. RELATED WORK
Optimized FFT libraries started with FFTW in the late

1990s with single-core CPUs as the standard computer archi-
tecture of the time [9]. FFTW was developed to address the
growing pains of novel CPU features such as deep pipeline
schemes, superscalar execution, and speculation. FFTW
succeeded in addressing this diversity within CPUs by pro-
viding portable performance via auto-tuning.

With the advent of accelerator-based computing, coupled
with architecture support for gather and scatter operations,

researchers have tapped into massively parallel architectures
such as the GPU to further accelerate the FFT. The work
of Govindaraju et al. set the stage for high-performance
discrete Fourier transforms on NVIDIA GPUs [10]. This
seminal work accelerated FFT through the CUDA architec-
ture rather than through low-level graphics APIs such as
DirectX or OpenGL. Concurrent with Govindaraju’s work
is the work of Volkov and Kazian [19]. Both of these works
focus primarily on the algorithmic design and mapping of
FFT onto the GPU and are limited to the NVIDIA GPU
architecture.

FFTs on AMD GPUs have been less explored, despite its
higher peak performance and memory bandwidth compared
to NVIDIA GPUs. Of the few works that are out there, we
note Nukada’s tutorial presentation on double-precision 1D
FFT targetted for the AMD Radeon HD 6970 GPU [14]. His
work provides a cursory overview of achieved performance
on OpenCL codes.

In the taxonomy of the aforementioned work, this work
focuses primarily on optimizations and its interactions with
machine-level behavior. Our end goal is to determine a set of
optimizations amenable for a vendor’s GPU architectures in
order to promote performance portability. While FFTW is
performance-portable across any CPU regardless of instruc-
tion set, architecture, or organization, our work seeks per-
formance portability across graphics processors, and later,
to any heterogeneous processor.

6. CONCLUSIONS
We briefly summarize our results in Table 6 calculated via

the following model flop count for FFT.

GFLOPS =
5× 10−9 ×N × log2(N)× batches

seconds

The model flop count equation is derived from the average
number of floating point operations to calculate the FFT.
The N × log2(N) portion is the algorithmic complexity of
the Cooley-Tukey formulation and the constant, 5, is the
average number of floating point operations in an FFT’s
butterfly computation.

We identify the following list of optimization principles for
FFT on GPUs.

• On-chip Resource Usage. Prefetching memory to
on-chip resources reduces the overall global bus traffic.
In particular, perform computation on the register file
and communication (transpose) operations in scratch-
pad local memory (RP+LM-CM). Unrolling the trans-
pose step saves local memory space by a factor of the
vector size, thus improving thread occupancy in all im-
plementations.

• Scalar and Vector Operations. 8 or 16-byte scalar
arithmetic operations are best suited for both scalar
and VLIW GPU architectures. In contrast, vector-
ized math (VAVM) degrades performance due to an
increase in register and local memory usage.

• Use Constant Memory. In isolation, constant mem-
ory provided little improvement as the computation
was performed in global memory. In concert, however,
constant memory produced a significant performance
improvement by trading transcendental floating-point
computation for cached memory accesses.
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Table 6: Summary of Experiment (Number of elements = 128 MB)
Device Sample Size Baseline Optimal Speedup Speedup over Optimal Set

(GFLOPS) (GFLOPS) FFTW
16 36

Intel i5-2400 (FFTW) 64 43
256 48

16 12 174 14.5x 4.8x RP + LM-CM + CGAP + VASM4 + CM-K
Radeon HD 6970 64 14 257 18.4x 6.0x RP + LM-CM + CGAP + VASM4 + CM-K

256 11 346 31.5x 7.2x RP + LM-CM + CGAP + VASM2 + CM-K

16 36 240 6.7x 6.7x RP + LM-CM + CGAP + VASM4 + CM-K
Radeon HD 7970 64 23 366 15.9x 8.5x RP + LM-CM + CGAP + VASM2 + CM-K

256 24 437 18.2x 9.1x RP + LM-CM + CGAP + VASM2 + CM-K

16 37 139 3.7x 3.9x RP + LM-CM + CGAP + VASM2 + CM-K
Tesla C2075 64 69 200 2.9x 4.7x RP + LM-CM + CGAP + VASM4 + CM-K

256 60 177 3.0x 3.7x RP + LM-CM + CGAP + VASM2 + CM-K

16 54 183 3.4x 5.1x RP + LM-CM + CGAP + VASM2 + CM-K
Tesla K20c 64 99 265 2.7x 6.2x RP + LM-CM + CGAP + VASM4 + CM-K

256 95 280 2.9x 5.8x RP + LM-CM + CGAP + VASM2 + CM-K
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