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Motivation 

• Computational Fluid Dynamics: 

– Physics aspects of fluid flow are represented by discretized 

algebraic forms/equations (e.g. Pressure, Density, Veloctiy 

…etc.). 

 

• Usually, It’s computational and data intensive. 

– High order numerical algorithms to study these physical 

aspects of high speed turbulent flows. 

– Requires long time to run (e.g. Converge and Find Solutions 

with very low error). 

 

• Motivated by aerospace and mechanical engineering 

domains. 
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Motivation 

• Our Main Focus: 

 

– The computer science view/aspects of such domain(s). 

 

– Optimizing these algorithms/Apps to achieve better 

performance. 

 

– Efficient parallelization of these algorithms/apps to run on 

multi-core platforms (e.g. NVIDIA/AMD GPUs, Intel Xeon Phi 

…etc.). 

 

– Exploring the programmability and  performance aspects and 

trade-offs.  

• Programming models (e.g. OpenACC vs. CUDA/OpenCL)  
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Research Challenges 

 

• Communications between the CPU and the GPU 

– Slow Data Transfer 

– Goals:  

1. Efficient data transfer techniques 

2. Minimize the data transfers. 
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Research Challenges 

 

• Efficient optimizations for multi-core platforms. 

 

– Understanding the architecture and resources 

limitations for each platform. 

 

– Shared Memory vs. Global Memory. 

 

– Avoid Register Pressure. 

 

– Identifying the optimum block-size. 

 

– Minimize Control Flow Divergence within Warp. 
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Research Challenges 

• Inter-Block Synchronization 

– Hybrid Model – CPU-based Synchronization 

– Dynamic Parallelism – GPU-based Synchronization. 
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Contributions & Approach 

• Case Study Application 

– Lid-Driven Cavity (LDC) 

• Fluid contained in a square domain with boundary conditions on 

all sides. 

• Three stationary sides  

• One moving side (with velocity tangent to the side). 
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Contributions & Approach 

 

• Acceleration of the LDC 

– OpenACC Implementation 

– CUDA Implementation. 

– Source-to-Source Translation  

• CUDA to OpenCL  --- Tool: CU2CL 

 

• Examining the programmability vs. the Performance 

of the three programming models. 

– CUDA/OpenCL expected to perform better. 

– OpenACC easier to program (i.e. minimal to no changes to 

the sequential code) 

– OpenCL/OpenACC portable across different Platforms (e.g. 

CPU, NVIDIA GPU and AMD GPU)..  
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Contributions & Approach  

(Shared Memory) 

 

• Shared Memory Optimization 

 

• LDC is stencil-based application. 

– Each interior cell calculations involve the neighboring cells values. 

– Data reuse benefits from accessing less expensive shared memory 

instead of the global memory.  
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Contributions & Approach 

(Branching Elimination) 

 

• Control Flow Diversion/Branching 

– Diversion: difference execution paths in the app. 

– Different execution paths are serialized in the GPU. 

– Impact the performance negatively. 

 

• Proposed Solution 

– Kernel Fission based on the control flow. 

– Each  Flow is handled by a separate kernel. 

 

• In the Lid-Driven Cavity 

– Interior Cells – Performed by Kernel 

– Each boundary cells (e.g. Upper/Lower Rows, most right/left 

Columns and Corner Cells) are performed by separate 

Kernels.  11 



synergy.cs.vt.edu 

Contributions & Approach 

(Registers Usage) 
 

• Registers are one of the critical resources of the GPU. 

 

• Pros: 

– Very Fast Memory Access. 

 

• Cons: 

– Limited Number per thread based on Architecture. (e.g. 

Kepler allows upto 255 register per thread). 

– Using big number of registers per thread leads to less active 

concurrent/parallel warps/threads. (i.e. Register Pressure 

issue). 

 

• Analysis using performance tools (e.g. CodeXL, 

NVIDIA Visualizer). 
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Contributions & Approach  

(Registers Usage) 

 

• Register Pressure Solutions 

– Register Pressure: Usage of large number of registers per 

thread that leads to a contention. 

 

– Compiler-based 

• Capping the register per thread limit to specific number 

(e.g. For NVIDIA, -maxrregcount=<value>). 

• Not always improves the performance. 

 

– Algorithmic-based 

• Kernel Fission in order to reduce the workload per thread. 

• Not always feasible – depends on the instructions 

dependency. 

• May add redundant computation overhead. 13 
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Contributions & Approach 

(GPU/CPU Communication) 

 

• Data Transfer between GPU and CPU 

 

– If data is small enough to reside in the GPU global 

memory. 

• Single copy in at the beginning – Before computation 

• Single copy out at the end  -- After computation 

 

– Otherwise (Data can’t reside in the GPU Memory) 

• Out of my scope so far. 

• Data partitioning: Pipeline data transfer with computation 

(if possible). 

• Others. 
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Contributions & Approach 

(GPU/CPU Communication) 

 

• Data Transfer between GPU and CPU 

 

– Data/Updates need to be exchanged between the CPU 

and the GPU. 

 

– If this data will be processed by the CPU using some 

arithmetic operations. 

• Then almost some of the programming models allow 

“reduction” operations (e.g. OpenACC) 

• Other programming models, “reduction” techniques can 

be manually implemented (e.g. CUDA and OpenCL).  
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Contributions & Approach 

(Synchronization) 

 

• Inter-Block Synchronization 

– It is an overhead in the accelerators world. 

 

• Several Techniques/Models can be used for sync, 

Our Focus: 

– Hybrid Mode : CPU handles all the kernel launches. 

 

– Dynamic Parallelism Mode: GPU is in charge. 

 

– So far, Hybrid mode outperforms the Dynamic parallelism.  

 

– On the other hand, Dynamic Parallelism maybe used to save 

power consumption. 16 
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Block Size Exploration 

• OpenCL running on AMD Radeon HD 7970 
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Execution Time on K20c 

• LDC Execution Time over multiple architectural 

generations on NVIDIA GPUs. 
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Programmability vs. Performance 

• High level programming models (e.g. OpenACC) 

– Easy to use. 

– Less control over the architecture resources. 

– Most Likely Portable across Platforms (e.g. CPU, AMD/NVIDIA 

GPUs). 

– Lower Performance. 

 

• Low level programming models (e.g. CUDA, OpenCL) 

– Difficult to use. 

– More control over the architecture resources. 

– Less/Not Portable across Platforms (e.g. CPU, AMD/NVIDIA 

GPUs). 

– Higher Performance with careful optimizations. 
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OpenACC vs. CUDA on K20c 

• CUDA outperforms the OpenACC with ~1.3x 
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OpenACC vs. OpenCL on HD 7970 

• OpenCL outperforms the OpenACC with ~1.07x 
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Dynamic Parallelism (DP) on K20c 

• Kernel Fission – Register Usage 
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Conclusion 

• Recap 

– Computational Fluid Dynamics (CFDs) is a driving force 

in the R&D and the manufacturing of many industrial 

processes.  

– Stencil patterns are heavily used in CFDs. 

– Directed optimizations for stencils are needed. 

a. Shared Memory  

b. Data Transfer between GPU and CPU 

c. Inter-Block synchronization.  

d. Programming models explorations (Programmability vs. 

Performance) 

e. Registers Usage and Control flow branching  

f. Block Size Exploration.  
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Future Work 

 

• Dynamic Parallelism Exploration 

– Performance vs. Power Consumption. 

 

• Further Performance Tuning for other CFD/Stencil 

applications. Related to expanding the benchmark. 

 

• Further optimization, analysis and insights on the 

OpenCL/CUDA Lid-Driven Cavity Code. 
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