
synergy.cs.vt.edu

Directed Optimization On Stencil-based

Computational Fluid Dynamics

Application(s)

Islam Harb

08/21/2015

synergy.cs.vt.edu

Agenda

• Motivation

• Research Challenges

• Contributions & Approach

• Results

• Conclusion

• Future Work

2

synergy.cs.vt.edu

Motivation

• Computational Fluid Dynamics:

– Physics aspects of fluid flow are represented by discretized

algebraic forms/equations (e.g. Pressure, Density, Veloctiy

…etc.).

• Usually, It’s computational and data intensive.

– High order numerical algorithms to study these physical

aspects of high speed turbulent flows.

– Requires long time to run (e.g. Converge and Find Solutions

with very low error).

• Motivated by aerospace and mechanical engineering

domains.

 3

synergy.cs.vt.edu

Motivation

• Our Main Focus:

– The computer science view/aspects of such domain(s).

– Optimizing these algorithms/Apps to achieve better

performance.

– Efficient parallelization of these algorithms/apps to run on

multi-core platforms (e.g. NVIDIA/AMD GPUs, Intel Xeon Phi

…etc.).

– Exploring the programmability and performance aspects and

trade-offs.

• Programming models (e.g. OpenACC vs. CUDA/OpenCL)

 4

synergy.cs.vt.edu

Research Challenges

• Communications between the CPU and the GPU

– Slow Data Transfer

– Goals:

1. Efficient data transfer techniques

2. Minimize the data transfers.

5

synergy.cs.vt.edu

Research Challenges

• Efficient optimizations for multi-core platforms.

– Understanding the architecture and resources

limitations for each platform.

– Shared Memory vs. Global Memory.

– Avoid Register Pressure.

– Identifying the optimum block-size.

– Minimize Control Flow Divergence within Warp.

6

synergy.cs.vt.edu

Research Challenges

• Inter-Block Synchronization

– Hybrid Model – CPU-based Synchronization

– Dynamic Parallelism – GPU-based Synchronization.

7

synergy.cs.vt.edu

Contributions & Approach

• Case Study Application

– Lid-Driven Cavity (LDC)

• Fluid contained in a square domain with boundary conditions on

all sides.

• Three stationary sides

• One moving side (with velocity tangent to the side).

8

synergy.cs.vt.edu

Contributions & Approach

• Acceleration of the LDC

– OpenACC Implementation

– CUDA Implementation.

– Source-to-Source Translation

• CUDA to OpenCL --- Tool: CU2CL

• Examining the programmability vs. the Performance

of the three programming models.

– CUDA/OpenCL expected to perform better.

– OpenACC easier to program (i.e. minimal to no changes to

the sequential code)

– OpenCL/OpenACC portable across different Platforms (e.g.

CPU, NVIDIA GPU and AMD GPU)..

9

synergy.cs.vt.edu

Contributions & Approach

(Shared Memory)

• Shared Memory Optimization

• LDC is stencil-based application.

– Each interior cell calculations involve the neighboring cells values.

– Data reuse benefits from accessing less expensive shared memory

instead of the global memory.

10

synergy.cs.vt.edu

Contributions & Approach

(Branching Elimination)

• Control Flow Diversion/Branching

– Diversion: difference execution paths in the app.

– Different execution paths are serialized in the GPU.

– Impact the performance negatively.

• Proposed Solution

– Kernel Fission based on the control flow.

– Each Flow is handled by a separate kernel.

• In the Lid-Driven Cavity

– Interior Cells – Performed by Kernel

– Each boundary cells (e.g. Upper/Lower Rows, most right/left

Columns and Corner Cells) are performed by separate

Kernels. 11

synergy.cs.vt.edu

Contributions & Approach

(Registers Usage)

• Registers are one of the critical resources of the GPU.

• Pros:

– Very Fast Memory Access.

• Cons:

– Limited Number per thread based on Architecture. (e.g.

Kepler allows upto 255 register per thread).

– Using big number of registers per thread leads to less active

concurrent/parallel warps/threads. (i.e. Register Pressure

issue).

• Analysis using performance tools (e.g. CodeXL,

NVIDIA Visualizer).

12

synergy.cs.vt.edu

Contributions & Approach

(Registers Usage)

• Register Pressure Solutions

– Register Pressure: Usage of large number of registers per

thread that leads to a contention.

– Compiler-based

• Capping the register per thread limit to specific number

(e.g. For NVIDIA, -maxrregcount=<value>).

• Not always improves the performance.

– Algorithmic-based

• Kernel Fission in order to reduce the workload per thread.

• Not always feasible – depends on the instructions

dependency.

• May add redundant computation overhead. 13

synergy.cs.vt.edu

Contributions & Approach

(GPU/CPU Communication)

• Data Transfer between GPU and CPU

– If data is small enough to reside in the GPU global

memory.

• Single copy in at the beginning – Before computation

• Single copy out at the end -- After computation

– Otherwise (Data can’t reside in the GPU Memory)

• Out of my scope so far.

• Data partitioning: Pipeline data transfer with computation

(if possible).

• Others.

14

synergy.cs.vt.edu

Contributions & Approach

(GPU/CPU Communication)

• Data Transfer between GPU and CPU

– Data/Updates need to be exchanged between the CPU

and the GPU.

– If this data will be processed by the CPU using some

arithmetic operations.

• Then almost some of the programming models allow

“reduction” operations (e.g. OpenACC)

• Other programming models, “reduction” techniques can

be manually implemented (e.g. CUDA and OpenCL).

15

synergy.cs.vt.edu

Contributions & Approach

(Synchronization)

• Inter-Block Synchronization

– It is an overhead in the accelerators world.

• Several Techniques/Models can be used for sync,

Our Focus:

– Hybrid Mode : CPU handles all the kernel launches.

– Dynamic Parallelism Mode: GPU is in charge.

– So far, Hybrid mode outperforms the Dynamic parallelism.

– On the other hand, Dynamic Parallelism maybe used to save

power consumption. 16

synergy.cs.vt.edu

Results

17

synergy.cs.vt.edu

Block Size Exploration

• OpenCL running on AMD Radeon HD 7970

18

synergy.cs.vt.edu

Execution Time on K20c

• LDC Execution Time over multiple architectural

generations on NVIDIA GPUs.

0

10

20

30

40

50

60

70

80

One Kernel -
Baseline

Kernel Fission -
Unify Control

Diversion (KFCD)

KFCD + Kernel
Fission - Register

Usage (KFRU)

KFCD + Shared
Mem

sm_20

sm_30

sm_35

Execution

Time

(Sec)

synergy.cs.vt.edu

Programmability vs. Performance

• High level programming models (e.g. OpenACC)

– Easy to use.

– Less control over the architecture resources.

– Most Likely Portable across Platforms (e.g. CPU, AMD/NVIDIA

GPUs).

– Lower Performance.

• Low level programming models (e.g. CUDA, OpenCL)

– Difficult to use.

– More control over the architecture resources.

– Less/Not Portable across Platforms (e.g. CPU, AMD/NVIDIA

GPUs).

– Higher Performance with careful optimizations.

synergy.cs.vt.edu

OpenACC vs. CUDA on K20c

• CUDA outperforms the OpenACC with ~1.3x

0

5

10

15

20

25

30

35

40

CUDA OpenACC

Execution Time
(Sec)

LDC Execution
Time On DNA3

synergy.cs.vt.edu

OpenACC vs. OpenCL on HD 7970

• OpenCL outperforms the OpenACC with ~1.07x

0

2

4

6

8

10

12

14

16

18

OpenCL OpenACC

Execution Time
(Sec)

LDC Execution
Time On Caterpillar

synergy.cs.vt.edu

Dynamic Parallelism (DP) on K20c

• Kernel Fission – Register Usage

0

5

10

15

20

25

30

Lid-Driven Cavity

Single Kernel
(No DP)

Single Kernel +
DP_Applied

Kernel Execution

Time in Sec

Slow Down ~1.07x
25.7

27.5

synergy.cs.vt.edu

Conclusion

• Recap

– Computational Fluid Dynamics (CFDs) is a driving force

in the R&D and the manufacturing of many industrial

processes.

– Stencil patterns are heavily used in CFDs.

– Directed optimizations for stencils are needed.

a. Shared Memory

b. Data Transfer between GPU and CPU

c. Inter-Block synchronization.

d. Programming models explorations (Programmability vs.

Performance)

e. Registers Usage and Control flow branching

f. Block Size Exploration.

 24

synergy.cs.vt.edu

Future Work

• Dynamic Parallelism Exploration

– Performance vs. Power Consumption.

• Further Performance Tuning for other CFD/Stencil

applications. Related to expanding the benchmark.

• Further optimization, analysis and insights on the

OpenCL/CUDA Lid-Driven Cavity Code.

25

