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Motivation

Computational Fluid Dynamics:

- Physics aspects of fluid flow are represented by discretized
algebraic forms/equations (e.g. Pressure, Density, Veloctiy
...etc.).

Usually, It’s computational and data intensive.

- High order numerical algorithms to study these physical
aspects of high speed turbulent flows.

- Requires long time to run (e.g. Converge and Find Solutions
with very low error).

Motivated by aerospace and mechanical engineering
domains.

§ VirginiaTech SYNeRG?

Invent the Future synergy.cs.vt.edu



Motivation

Our Main Focus:

- The computer science view/aspects of such domain(s).

- Optimizing these algorithms/Apps to achieve better
performance.

- Efficient parallelization of these algorithms/apps to run on
multi-core platforms (e.g. NVIDIA/AMD GPUs, Intel Xeon Phi
...etc.).

- Exploring the programmability and performance aspects and
trade-offs.

- Programming models (e.g. OpenACC vs. CUDA/OpenCL)
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Research Challenges

Communications between the CPU and the GPU

- Slow Data Transfer

- Goals:
1. Efficient data transfer techniques
2. Minimize the data transfers.

Virtual memory

memory

384-bit GDDR5-6000
= 336.4 GB/s
Latency: unknown

128-bit DDR3-2133
= 34.13 GB/s

Latency: unknown copy € ntire

data

PCIl Express bus

PCle 2.0 x16 = 8GB/s
PCle 3.0 x16 = 15.75 GB/s
Latency: unknown
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Research Challenges

Efficient optimizations for multi-core platforms.

- Understanding the architecture and resources
limitations for each platform.

- Shared Memory vs. Global Memory.
- Avoid Register Pressure.
- ldentifying the optimum block-size.

- Minimize Control Flow Divergence within Warp.
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Research Challenges

Inter-Block Synchronization
- Hybrid Model - CPU-based Synchronization
- Dynamic Parallelism - GPU-based Synchronization.

Dynamic Parallelism
GPU Adapts to Data, Dynamically Launches New Threads

Fermi GPU Kepler GPU
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Contributions & Approach

Case Study Application
- Lid-Driven Cavity (LDC)

- Fluid contained in a square domain with boundary conditions on

all sides.
- Three stationary sides

- One moving side (with velocity tangent to the side).

= 0.0

Cavity

Moving Lid
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Contributions & Approach

Acceleration of the LDC
- OpenACC Implementation
- CUDA Implementation.

- Source-to-Source Translation
- CUDA to OpenCL --- Tool: CU2CL

Examining the programmability vs. the Performance
of the three programming models.

- CUDA/OpenCL expected to perform better.

- OpenACC easier to program (i.e. minimal to no changes to
the sequential code)

- OpenCL/OpenACC portable across different Platforms (e.q.
CPU, NVIDIA GPU and AMD GPU)..
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Contributions & Approach
(Shared Memory)

Shared Memory Optimization

LDC is stencil-based application.

- Each interior cell calculations involve the neighboring cells values.

- Data reuse benefits from accessing less expensive shared memory
instead of the global memory.

10
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Contributions & Approach
(Branching Elimination)

Control Flow Diversion/Branching

- Diversion: difference execution paths in the app.
- Different execution paths are serialized in the GPU.
~ condition b Falee

True

- Impact the performance negatively. l—:: «
Proposed Solution e -
block block

- Kernel Fission based on the control flow.

- Each Flow is handled by a separate kernel.

In the Lid-Driven Cavity ‘

- Interior Cells - Performed by Kernel

- Each boundary cells (e.g. Upper/Lower Rows, most right/left
Columns and Corner Cells) are performed by separate
Kernels. 11
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Contributions & Approach
(Registers Usage)

Registers are one of the critical resources of the GPU.

Pros:
- Very Fast Memory Access.

Cons:

- Limited Number per thread based on Architecture. (e.g.
Kepler allows upto 255 register per thread).

- Using big number of registers per thread leads to less active
concurrent/parallel warps/threads. (i.e. Register Pressure
issue).

Analysis using performance tools (e.g. CodeXL,
NVIDIA Visualizer).

12
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Contributions & Approach
(Registers Usage)

Register Pressure Solutions

- Register Pressure: Usage of large number of registers per
thread that leads to a contention.

- Compiler-based

- Capping the register per thread limit to specific number
(e.g. For NVIDIA, -maxrregcount=<value>).

- Not always improves the performance.

- Algorithmic-based
- Kernel Fission in order to reduce the workload per thread.

- Not always feasible - depends on the instructions
dependency.

- May add redundant computation overhead. 13
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Contributions & Approach
(GPU/CPU Communication)

Data Transfer between GPU and CPU

- If data is small enough to reside in the GPU global
memory.

- Single copy in at the beginning - Before computation
- Single copy out at the end -- After computation

- Otherwise (Data can’t reside in the GPU Memory)
- Out of my scope so far.

- Data partitioning: Pipeline data transfer with computation
(if possible).

- Others.
14
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Contributions & Approach
(GPU/CPU Communication)

Data Transfer between GPU and CPU

- Data/Updates need to be exchanged between the CPU
and the GPU.

- If this data will be processed by the CPU using some
arithmetic operations.

- Then almost some of the programming models allow
“reduction” operations (e.g. OpenACC)

- Other programming models, “reduction” techniques can
be manually implemented (e.g. CUDA and OpenCL).

15
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Contributions & Approach
(Synchronization)

Inter-Block Synchronization
- Itis an overhead in the accelerators world.

Several Techniques/Models can be used for sync,
Our Focus:
- Hybrid Mode : CPU handles all the kernel launches.

- Dynamic Parallelism Mode: GPU is in charge.
- So far, Hybrid mode outperforms the Dynamic parallelism.

- On the other hand, Dynamic Parallelism maybe used to save
power consumption. 16
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Results

17
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Block Size Exploration

OpenCL running on AMD Radeon HD 7970

Approximated
Kernel Time
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Execution Time on K20c

LDC Execution Time over multiple architectural
generations on NVIDIA GPUs.
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Programmability vs. Performance

High level programming models (e.g. OpenACC)
- Easy to use.

- Less control over the architecture resources.

- Most Likely Portable across Platforms (e.g. CPU, AMD/NVIDIA
GPUs).

- Lower Performance.

Low level programming models (e.g. CUDA, OpenCL)
- Difficult to use.

- More control over the architecture resources.

- Less/Not Portable across Platforms (e.g. CPU, AMD/NVIDIA
GPUs).

- Higher Performance with careful optimizations.
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OpenACC vs. CUDA on K20c

CUDA outperforms the OpenACC with ~1.3x
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OpenACC vs. OpenCL on HD 7970

OpenCL outperforms the OpenACC with ~1.07x
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Dynamic Parallelism (DP) on K20c

Kernel Fission - Register Usage
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Recap

Conclusion

- Computational Fluid Dynamics (CFDs) is a driving force
in the R&D and the manufacturing of many industrial
processes.

- Stencil patterns are heavily used in CFDs.
- Directed optimizations for stencils are needed.

d.

Hh D

Shared Memory

b. Data Transfer between GPU and CPU
C.
d. Programming models explorations (Programmability vs.

Inter-Block synchronization.

Performance)
Registers Usage and Control flow branching
Block Size Exploration.

24
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Future Work

Dynamic Parallelism Exploration
- Performance vs. Power Consumption.

Further Performance Tuning for other CFD/Stencil
applications. Related to expanding the benchmark.

- Further optimization, analysis and insights on the
OpenCL/CUDA Lid-Driven Cavity Code.

25
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