ENERGY-EFFICIENT VISUALIZATION PIPELINES A Case Study in Climate Simulation

Vignesh Adhinarayanan Ph.D. (CS) Student Synergy Lab, Virginia Tech

INTRODUCTION

"Supercomputers are constrained by power"

- Power budget for Los Alamos county = 66 MW
- Power budget for Trinity supercomputer alone = 15 MW
- Exceeding power budget
 Brownouts in Los Alamos
 - Installing and starting ASCI White believed to play a part in the rolling California brownouts in 2001

INTRODUCTION

"Supercomputers are constrained by energy"

- I MW power consumption \rightarrow I million dollars per year
 - Operating cost of supercomputers is comparable to the acquisition cost
 - The gap is expected to narrow down in the future

THE ENERGY CHALLENGE

• Off-chip data movement cost nearly hundred times as much energy as on-chip data movement

Image source: J. Shalf et al., "Exascale Computing Technology Challenges", VECPAR 2010

TRADITIONAL "POST-PROCESSING" VISUALIZATION

MODERN "POST-PROCESSING" VISUALIZATION

Also write raw output only every few iterations (i.e., temporal sampling technique is used)

But you may miss out on important simulation events

GOAL

"Study the performance, power, and energy trade-offs among traditional post-processing, modern post-processing, and in-situ visualization pipelines"

• Detailed sub-component level power measurements within a node to gain detailed insights

- i.e., measure power consumption of CPU, memory, and disk

 Measurements at scale to understand problems unique to big supercomputers

APPLICATION

Eddies near Southern Africa

- Modeling and Prediction Across Scale (MPAS) Ocean Simulation
 - Solves an unstructured mesh problem
 - End goal: Identify eddies in the ocean

EXPERIMENTS AT SCALE

HARDWARE PLATFORM

- Compute nodes
 - 64 nodes
 - Each node contains 2x Intel Xeon E5-2670 and 64 GB of RAM
 - Nominal power consumption
 - 6000 W (idle) to 20000 W (workload such as MPAS)
- Storage nodes
 - Lustre file system
 - 5 nodes configured as I master + 2 MDS + 2 OSS
 - I RAID storage per MDS and OSS
 - Nominal power consumption
 - 2500W (idle) to 2800W (active)

EXPERIMENTS AT SCALE ENERGY COMPARISON

Real measurements

Partial measurement and estimation

In-situ consumes 19% lower energy than post-processing

SINGLE-NODE EXPERIMENTS

HARDWARE PLATFORM

CPU	2x Intel Xeon E5-2665
CPU frequency	2.4 GHz
Last-level cache	20 MB
Memory	4x 16GB DDR3-1333
Memory size	64 GB
Hard disk	Seagate 7200rpm disk
Storage size	500GB
Disk bandwidth	6.0 Gbps

Hardware configuration

DATA COLLECTION

DISK POWER MODEL

Invent the Future

synergy.cs.vt.edu

Single-Node Experiments ENERGY COMPARISON

- Processor and memory consume lot of energy while waiting for I/O
- Worthwhile to minimize energy consumption while idling

Single-Node Experiments STORAGE REQUIREMENTS

- ~97.5% lower storage requirement for the in-situ pipeline
 - Implies smaller storage cluster
 - Implies lower power consumption

RESOURCES FOR POST-PROCESSING

Compute nodes

STORAGE NODES

Resources for Insitu

Compute nodes

STORAGE NODES

REDISTRIBUTING STORAGE POWER TO COMPUTE NODES: IMPACT ON PERFORMANCE

Assuming reduced storage nodes results in 10% of total power redirected to compute nodes

Performance improves by up to 6% for MPAS-O

FINDINGS

- Most energy savings come from reducing system idling (i.e., from reducing the I/O wait time)
- Further savings possible if we can reduced size of the storage nodes

CONCLUSION

- In-situ visualization offers the following advantages:
 - Reduced energy consumption (by reducing system idling or I/O wait time)
 - Reduced power (by using fewer storage nodes)
 - Improved performance (by reducing I/O wait time and by making more power available for compute nodes)

APPENDIX

EXPECTATIONS FOR A SUPERCOMPUTER

- Increased I/O wait time
 - Storage separated from compute by network
 - Longer execution time and corresponding increase in energy
- Additional energy consumption from data movement through the network
 - No data transfer via network cables in single-node
- Power/energy overhead for storage higher
 - Separate cluster for storage → additional CPUs, memory, cooling etc.
 - Storage sub-system shared with compute sub-system in single-node

FUTURE DIRECTIONS

- Enhancing HPC systems
 - Flash buffers and SSDs can reduce I/O wait time
 - Downside: Introducing more components can increase power consumption
- HPC system design changes
 - Bringing storage nodes and compute nodes together
 - Similar to Memory in Processor or Processor in Memory concepts in the computer architecture community
- Runtime system changes
 - Energy proportional computing and storage
 - Putting compute nodes to sleep states during I/O
 - Putting some storage nodes to deep sleep state when bandwidth and storage requirements are lower

Single-Node Experiments EXECUTION-TIME COMPARISON

- In-situ consumes 7% lower execution time than modern post-processing
 - Reduced I/O wait time
- The difference will be significant for an HPC system
 - Details later

Single-Node Experiments **Power Comparison**

- In-situ consumes 3% more power than modern post-processing
 - Difficult trade-off choice
- Might not be the same for a supercomputer
 - Details later

