
synergy.cs.vt.edu

GLAF: A Visual Programming and Auto-

Tuning Framework for Parallel Computing

Student: Konstantinos Krommydas

Collaborator: Dr. Ruchira Sasanka (Intel)

Advisor: Dr. Wu-chun Feng



synergy.cs.vt.edu

2

High-performance computing is crucial 

in a broad range of scientific domains:

• Engineering, math, physics, biology, …

Parallel 

programming 

revolution has made 

high-performance 

computing 

accessible to the 

broader masses

Motivation



synergy.cs.vt.edu

Many different programming languages

Challenges

Many different computing platforms

Many different architectures

Many different optimization strategies

Domain experts should not (need to) know all these details

• but rather focus on their science



synergy.cs.vt.edu

Challenges

Domain experts need to collaborate with computer scientists

4

pseudocode

unoptimized/naïve

serial code

highly optimized

parallel code

Innovation

slow-down

Limited access to 

parallel computing

• Communication overhead & errors

• Need to exchange domain-

specific/programming knowledge



synergy.cs.vt.edu

Contributions

• Realize a programming abstraction & development 

framework for domain experts to provide a balance 

between performance and programmability

– i.e., obtain fast performance from algorithms that have been 

programmed easily

5

*G
L

A
F

auto-parallelizable, optimizable, tunable

intuitive, familiar, minimalistic syntax

data-visual and interactive

able to integrate with existing legacy code

Desired features

*Grid-based Language and Auto-tuning Framework



synergy.cs.vt.edu

Programming Using GLAF: a Simple Example

6



synergy.cs.vt.edu

7

Graphical User Interface
Comments

(in step, 

statements, 

grids, …)

Module

name

Function

name

Step number

(within function)

Click-based

interface



synergy.cs.vt.edu

8

Grid-Based Data Structures

• GLAF variables are based on the concept of grids:

• familiar abstraction (e.g., images, matrices, 

spreadsheets)

• regular format that facilitates code generation, 

optimizations, and parallelism detection

• Grid-based programming puts the focus on the 

relation, rather than the implementation details

• Example:

• Scalar variable: 0D grid

• 1D array: one-dimensional grid



synergy.cs.vt.edu

9

Grid-Based Data Structures

Data type
Dimension title

Grid name



synergy.cs.vt.edu

10

Grid-Based Data Structures

Different data 

types across 

a dimension



synergy.cs.vt.edu

11

Grid-Based Data Structures



synergy.cs.vt.edu

12

GLAF Infrastructure

Browser Web/Cloud

• GLAF Programming GUI

• Data visualization

• Fortran/C/JS/OpenCL code 

generation

• Auto-parallelization

• Compilation/auto-tuning 

script generation

• Data storage• Compilation

• Auto-tuning

• Execution



synergy.cs.vt.edu

13

Code Generation



synergy.cs.vt.edu

14

Code Generation



synergy.cs.vt.edu

15

Auto-Tuning
Generates 

platform-specific 

binaries &

optimizationsSelects the 

languages in 

which to auto-

generate code Selects one or 

more code “starting 

points” for each

languageSelects 

optimizations for 

each combination 

of language and 

code “starting point”



synergy.cs.vt.edu

16

Auto-Tuning



synergy.cs.vt.edu

Multi-level 

Auto-Tuning 

Approach

17

Fortran C OpenCL

Serial GLAF-Parallel Compiler Parallel

GLAF

program

Data-layout 

transforms
Loop collapse

transforms

Loop interchange

transforms
…



synergy.cs.vt.edu

18

Visualization

• Data visualization facilitates:

– understanding the algorithm being developed

– revealing bugs at an early stage

“Show Data”



synergy.cs.vt.edu

19

Visualization

• Data visualization facilitates:

– understanding the algorithm being developed

– revealing bugs at an early stage

“Colorize”



synergy.cs.vt.edu

20

Visualization

• Data visualization facilitates:

– understanding the algorithm being developed

– revealing bugs at an early stage

“Image Map”



synergy.cs.vt.edu

21

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

serial	 compiler-parallelized	 GLAF-parallelized(col(3))	 GLAF-parallelized(col(1))	

Sp
e
e
d
-u
p
	o
ve
r	
se
ri
al
	f
o
rt
ra
n
_C

P
U
	

Implementa on	

fortran_CPU	

C_CPU_norestr	

C_CPU_restr	

fortran_XP	

C_XP_norestr	

C_XP_restr	

Results: 3D finite difference algorithm



synergy.cs.vt.edu

22

0	

5	

10	

15	

20	

25	

serial	SoA	 serial	AoS	 compiler-parallelized	SoA	compiler-parallelized	AoS	 GLAF-parallelized	SoA	 GLAF-parallelized	AoS	

Sp
e
e
d
-u
p
	o
ve
r	
se
ri
al
	S
o
A
	f
o
rt
ra
n
_
C
P
U
	

Implementa on	

fortran_CPU	 fortran_CPU_tmp	 C_CPU_norestr	 C_CPU_restr_tmp	 C_CPU_restr_tmp_powf	

fortran_XP	 fortran_XP_tmp	 C_XP_norestr	 C_XP_restr_tmp	 C_XP_restr_tmp_powf	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

Results: N-body algorithm



synergy.cs.vt.edu

Related Work

23

Implicit Explicit

Parallelization

Compilers:

gcc, Intel, 

Cray, PGI,

…

Extensions/

libraries:

Pthreads, OpenMP,

OpenACC, Chapel

…

+ Includes loop-level parallelism & data-level 

parallelism (vectorization), and potential 

optimizations

- Requires certain programming knowledge

- (Often) conservative nature

Problem 

Solving 

Environments

Domain-specific:

computational biology,

physics,

dense linear algebra,

Fast-fourier transforms,

…

+ High-performance auto-tuning

- Restrictive in nature

- Restrictive in terms of target 

language and/or platform

Domain-

Specific 

Languages



synergy.cs.vt.edu

Future Work

• Improve tool’s robustness

• Enabling more languages/extensions:

– OpenCL, OpenACC

– Support of distributed programming (MPI)

• Dynamic feedback/advice on parallelism issues

• Extend auto-tuning, auto-parallelization/auto-

vectorization capabilities

• Implement more dwarfs and provide back-end support 

for common programming pitfalls in code generated 

for supported languages



synergy.cs.vt.edu

Conclusion

GLAF targets domain experts and provides a fine balance between 

performance and programmability

• auto-parallelization, optimization and auto-tuning

• helps avoid common programming pitfalls

GLAF allows systematic generation 

of multiple starting points for 

different 

languages/platforms/optimizations

Different seeds in a state-

space search algorithm

Analogous to:In summary:

“GLAF: A Visual Programming and Auto-Tuning 

Framework for Parallel Computing”
Krommydas, Sasanka, Feng

Leads to overall better performance Global vs. local minimum


