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High-performance computing is crucial 

in a broad range of scientific domains:

• Engineering, math, physics, biology, …

Parallel 

programming 

revolution has made 

high-performance 

computing 

accessible to the 

broader masses

Motivation
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Many different programming languages

Challenges

Many different computing platforms

Many different architectures

Many different optimization strategies

Domain experts should not (need to) know all these details

• but rather focus on their science
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Challenges

Domain experts need to collaborate with computer scientists
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pseudocode

unoptimized/naïve

serial code

highly optimized

parallel code

Innovation

slow-down

Limited access to 

parallel computing

• Communication overhead & errors

• Need to exchange domain-

specific/programming knowledge
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Contributions

• Realize a programming abstraction & development 

framework for domain experts to provide a balance 

between performance and programmability

– i.e., obtain fast performance from algorithms that have been 

programmed easily
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*G
L

A
F

auto-parallelizable, optimizable, tunable

intuitive, familiar, minimalistic syntax

data-visual and interactive

able to integrate with existing legacy code

Desired features

*Grid-based Language and Auto-tuning Framework
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Programming Using GLAF: a Simple Example
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Graphical User Interface
Comments

(in step, 

statements, 

grids, …)

Module

name

Function

name

Step number

(within function)

Click-based

interface
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Grid-Based Data Structures

• GLAF variables are based on the concept of grids:

• familiar abstraction (e.g., images, matrices, 

spreadsheets)

• regular format that facilitates code generation, 

optimizations, and parallelism detection

• Grid-based programming puts the focus on the 

relation, rather than the implementation details

• Example:

• Scalar variable: 0D grid

• 1D array: one-dimensional grid
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Grid-Based Data Structures

Data type
Dimension title

Grid name
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Grid-Based Data Structures

Different data 

types across 

a dimension
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Grid-Based Data Structures
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GLAF Infrastructure

Browser Web/Cloud

• GLAF Programming GUI

• Data visualization

• Fortran/C/JS/OpenCL code 

generation

• Auto-parallelization

• Compilation/auto-tuning 

script generation

• Data storage• Compilation

• Auto-tuning

• Execution
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Code Generation
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Code Generation
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Auto-Tuning
Generates 

platform-specific 

binaries &

optimizationsSelects the 

languages in 

which to auto-

generate code Selects one or 

more code “starting 

points” for each

languageSelects 

optimizations for 

each combination 

of language and 

code “starting point”



synergy.cs.vt.edu

16

Auto-Tuning
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Multi-level 

Auto-Tuning 

Approach
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Fortran C OpenCL

Serial GLAF-Parallel Compiler Parallel

GLAF

program

Data-layout 

transforms
Loop collapse

transforms

Loop interchange

transforms
…
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Visualization

• Data visualization facilitates:

– understanding the algorithm being developed

– revealing bugs at an early stage

“Show Data”
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Visualization

• Data visualization facilitates:

– understanding the algorithm being developed

– revealing bugs at an early stage

“Colorize”
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Visualization

• Data visualization facilitates:

– understanding the algorithm being developed

– revealing bugs at an early stage

“Image Map”
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Related Work
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Implicit Explicit

Parallelization

Compilers:

gcc, Intel, 

Cray, PGI,

…

Extensions/

libraries:

Pthreads, OpenMP,

OpenACC, Chapel

…

+ Includes loop-level parallelism & data-level 

parallelism (vectorization), and potential 

optimizations

- Requires certain programming knowledge

- (Often) conservative nature

Problem 

Solving 

Environments

Domain-specific:

computational biology,

physics,

dense linear algebra,

Fast-fourier transforms,

…

+ High-performance auto-tuning

- Restrictive in nature

- Restrictive in terms of target 

language and/or platform

Domain-

Specific 

Languages
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Future Work

• Improve tool’s robustness

• Enabling more languages/extensions:

– OpenCL, OpenACC

– Support of distributed programming (MPI)

• Dynamic feedback/advice on parallelism issues

• Extend auto-tuning, auto-parallelization/auto-

vectorization capabilities

• Implement more dwarfs and provide back-end support 

for common programming pitfalls in code generated 

for supported languages
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Conclusion

GLAF targets domain experts and provides a fine balance between 

performance and programmability

• auto-parallelization, optimization and auto-tuning

• helps avoid common programming pitfalls

GLAF allows systematic generation 

of multiple starting points for 

different 

languages/platforms/optimizations

Different seeds in a state-

space search algorithm

Analogous to:In summary:

“GLAF: A Visual Programming and Auto-Tuning 

Framework for Parallel Computing”
Krommydas, Sasanka, Feng

Leads to overall better performance Global vs. local minimum


