www.hume.ictas.vt.edu hume@vt.edu

WirginiaTech

Ted and Karyn **Hume Center** for National Security and Technology & **SEEC Center**: Synergistic Environments for Experimental Computing

Building a General Search Engine for Unstructured Data

Harold Trease Senior Research Scientist ICTAS HUME & SEEC Centers & Computer Science Department Virginia Tech

Electronic Warfare

Resilient Systems

Data to Decision

Why Build a Search Engine?

- Lots of data that isn't currently searchable because there is no metadata associated with it
 - image, (noisy) audio, video, communications, IoT
- Multi-INT Big Data -- The majority of unstructured data is "not" text
 - 88% Image/Video, 10% Audio/Communications, 2% Text
 - Video consumes ~75% of Internet bandwidth today (~85 90% 2018, Cisco)
- Help analysts/users find the information they want (actually, we provide pointers to information):
 - Google search for any type of digital data
- Multi-Sensor data fusion
- Making use of the structure of data (i.e., galaxy plots)
- Search for people, places, and things including their interactions (i.e., graphs)

Search Engine Technology

- Algorithms and Data Management:
 - Ingest: Unstructured data, compressed. Parallel I/O
 - Signature generation: Transform unstructured data into signatures
 - Signature comparison: Pairwise comparison of "unknown" signature with "known" signatures (database)
 - Connecting signatures into graphs
 - Results and Metrics: Not designed to be 100% accurate, but uses high probabilities
 - User Interfaces and user interaction
- Optimization:
 - Algorithms
 - Hardware and Code Performance
 - Usability
- Hybrid, Heterogeneous Parallel Computing
 - MPI, Hadoop/MapReduce
 - OpenMP, Cuda, OpenCL

Searching for Objects in Image/Video

Two typical frames from cell phone videos

WirginiaTech

⇐ Search for these objects, called "search criteria".
Wu, Hao, Kaixi, purple frisbee, building

Search for a building/place: http://198.82.148.84/datafission/results/synergy_building/html_search/

Search for the Purple Frisbee: http://198.82.148.84/datafission/results/synergy_frisbee/html_search/

Google Image .vs Bing Image vs. VT Search Engine

Google Image Search vs. VT Search Engine

Search Query	Bing Image Search
Google Image Search	We couldn't find any matches for this image. Search tips: • Please use a valid image file. The image can be a .gif, .jpg, .bmp or .png file type. • The image must be 10MB or smaller.
54 × 80 °°° No other sizes of this image found. Tip: Try entering a descriptive word in the search box. Visually similar images Report images	VT Search Table of top search frame results: 50

Compound Search (i.e., more than one search criteria)

Search Query

Google Image Search: (Google doesn't support multiple image search criteria)

Google	Als_right_eye	e.JPG × d	escribe ima	ige here			0	Ŷ	۹
	Web Images	News	Shopping	Maps	More -	Search tools			
	Image si 44 × 30 No other	ze: • sizes of this i	mage found.						
	Tip: Try entering	a descriptiv	ve word in t	he search	box.				
	Visually similar	· images				Report images			
						-			
			e	avr		area da			

(compound) VT Search Search Analyze Results: Source: /lustre/www-data/mediaData/processedData/Al/Als left eye.JPG/Als left eye.JPG /lustre/www-data/mediaData/processedData/Al/Als_nose.JPG/Als_nose.JPG /lustre/www-data/mediaData/processedData/Al/Als_right_eye.JPG/Als_right_eye.JPG Targets: /lustre/www-data/mediaData/processedData/Al/AlZahari.mp4/AlZahari.mp4 Table of top search frame results: 50

Rank 1 & 2

Search for RB #22 "and" the football

Rank 3 & 4

Rank 9 & 11

Rank 15 & 16

3 **OOIs**

DTV ULTN

AP. LAP

BLK

AUTO OK

La el ser la ella el

("and" operator)

TOC

(Compase Clip 7 Red Car.mpeg)

36 35 24 7212 BLK

313H

same scene at the same time?

("and" operator)

Source: /lustre/www-data/video11/sun /White_Dodge_Pickup_Parked.JPG

Target: /lustre/www-data/video11/sum /./slave video default/pc.001.000017/fi

AUTO OF

DIV ULTN

UTO-IC

AUTO OK

1616 RD

> /White Dodge Pick /White Dodge Pick /White Dodge Picka source: /lustre/wy

SAD: 000.76 /White Dodge Pic /White Dodge Pick /White Dodge Pic source: /lustre/ww

/White Dodge Pic /White Dodge Pic /White Dodge Pic

source: /lustre/www /White Dodge Pick /White Dodge Pick /White Dodge Picl

source: /lustre/wv /White Dodge Pick /White Dodge Picl

Search for 3 cars using Boolean "and" /"or" operators

Pattern-of-Life: Have three vehicles ever been in the

AUTO OF

27NH-

1.1.1

-16>

Rank: 4 SAD: 000.84 SAD: 001.04

/White Dodge Pick

source: /lustre/www /White Dodge Pick /White Dodge Pick

/White_Dodge_Picl

/White Dodge Pic /White Dodge Pic /White Dodge Picl source: /lustre/ww /White Dodge Pic /White Dodge Pick

172/290 ΑĒ. LAP RUK

10-10

LIO OK

Logo Search

State Farm Logo:

Search for the StateFarm logo in a set of 2012 and 2013 basketball highlight videos

Search Results:

Table of top search frame results: 50

Table of top search OOI results: 50

			_
_			
_		C	-

- State Farm
StateForm StateForm StateForm
📭 StateFarm
astronu 🔤 💶 🖉 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘
StateForm

Data ==> Signatures ==> Database ==> Search Engine

Signatures: Quantitative Information Representation What do signatures look like?

Signature Dope Vector: 151 80 V:20#E:20#S:20#F:20# 66.45 57.47 0.65 2.43 4.02 91.99 91.18 0.69 1.98 2.59 55.02 51.40 1.02 3.72 9.03 53.25 50.39 1.20 4.27 11.36 36.75 61.83 3.07 11.04 38.90 59.85 99.02 1.37 2.93 5.45 40.77 77.17 2.37 6.77 18.72 40.97 80.35 2.27 6.21 16.47 17.53 31.36 3.02 12.97 58.86 18.58 33.76 3.04 13.26 61.06 17.10 31.50 3.05 13.15 60.22 17.81 30.44 2.92 12.50 57.12 40.80 32.62 0.05 1.21 0.14 107.12 111.46 0.13 1.10 0.35 16.22 25.14 2.02 8.35 40.13 0.02 1.77 63.62 4052.87 258199.4 2

Signatures: Why these components? Necessary/Sufficient?

Statistics: If two signatures are going to match, then the statistical moments "necessarily" have to be similar.

WirginiaTech

Entropy: Entropy of man-made vs. natural objects is a discriminator. Natural objects tend to have higher entropy. Man made objects tend to have lower entropy because of (unnatural) uniformity.

Spatial frequencies: Edges, curvature, corners are important discriminators for the human vision system.

Spectral frequency: Used as a e discriminator, even though the audible frequency distribution may not mean anything to a human or DSP algorithm.

Signatures: Computational Kernels

Kernel 1: Mean **Kernel 2:** Generating function for variance, skew, kurtosis, hyper-skew

WirginiaTech

Kernel 3: Histogram and Histogram to P() normalization **Kernel 4:** P()log(P()) **Kernel 5:** Difference-of-Laplacians (DoL) edge detection filter. 5-Point / 9-Point Stencil Kernel 6: 1-D FFT

Youtube Videos: Media Space vs. Search Space

Exploiting the Structured of Data

Visualization of Data: classification, clustering, graph analysis, summarization/search results

IMSI Blacklist: 10 310 IMSI Blacklist: 10 404 IMSI Blacklist: 10 460

Area Code Blacklist: 10 540 Area Code Blacklist: 10 402 Area Code Blacklist: 10 509

AC dict entry: 402 31890 402 P Lincoln_and_Omaha_Nebraska AC dict entry: 509 31830 509 P Pullman_Spokane_and_Walla_Walla_Washington AC dict entry: 540 31020 540 E Fredericksburg_Roanoke_and_Winchester_Virginia

IMSI dict entry: 310 44810 310 390 us United_States 1 Yorkville_Telephone_Cooperative IMSI dict entry: 404 44380 404 30 in India_91_Usha_Martin_Telecom IMSI dict entry: 460 44650 460 01 cn China 86 China_Unicom

D-Wave Adiabatic Quantum Computer

- Computes all results at once, reads out one
- Solutions in about 100msec
- Crudely similar to simulated annealing
- Express problem as a QUBO (Quadratic Unconstrained Binary Optimization)
- Transformed into a QMI (Quantum Machine Instruction)
- Results read out as a binary bit vector
- Application areas:
 - Shor's Algorithm (exponential speedups)
 - Prime number factorization
 - Grover's Algorithm (SQRT(N) speedup)
 - Unstructured search
- Application areas:
 - Traveling salesman problem
 - Knapsack problem
 - Machine learning

D-Wave ToQ source code example

Simple program (sample.toq)

- # --- sample.toq --- Regression test
- #
- bool: @a, @b
- bool: @c, @d
- #~~~
- assert : And(Or(@a,@b), Or(@c,@d))
- assert: @c != @d
- assert: (@a+@d >= (@b+@c))
- #~~~
- end:

--- sample2.toq --- Regression test bool: @a, @b bool: @c, @d real: x, y, z #~~~ x = pi y = sqrt(x+2)z = x-y assert: And(Or(@a,@b),Or(@c,@d)) if: ((z*x)/3 > 3.11) assert: @c != @d endif: assert: (@a+@d >= (@b+@c)) #~~~ printvars: end:

sample2.toq

sample2.toq (results)

		4	Res (47	ults 1 oc	(40 curr	0 cases) ences)
*	Variable Name					
1)	@a	1	1	0	1	
2)	@b	0	0	1	0	
3)	@c	0	1	0	1	
4)	@d	1	0	1	1	
0cc	urrences'	340	89	41	1	
						<pre>' Enter "toq -QM" for an explanation of why (Sum(Occurrences) != cases)</pre>

Unstructured Search on the D-Wave Adiabatic Quantum Computer

 Relax a surface onto the surface of "unknown" signatures minus "database" signatures

Virginia Tech Search Engine (VTSE) Platform Architecture

