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Abstract—

We present a model-discovery methodology for

energy-aware computing systems that achieves high

prediction accuracy. Model discovery, or system

identification, is a critical first step in designing

advanced controllers that can dynamically man-

age the energy-performance trade-off in an optimal

manner. Our methodology favors Multiple-Inputs-

Multiple-Outputs (MIMO) models over a collection

of Single-Input-Single-Output (SISO) models, when

the inputs and outputs of the system are coupled in

a nontrivial way. In such cases, MIMO is generally

more accurate than SISO over a wide range of inputs

in predicting system behavior. Our experimental

evaluation, carried out on a representative server

workload, validates our approach. We obtained an

average prediction accuracy of 77% and 76% for

MIMO power and performance, respectively. We

also show that MIMO models are consistently more

accurate than SISO ones.
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I. INTRODUCTION

The carbon footprint of the IT industry, though

only 2% of the world economy, is estimated to

be equal to that of the entire aviation indus-

try [2]. Making matters worse, server and data-

center energy use has been growing rapidly in

recent years [18]. Concerns about energy con-

sumption in the computing arena have led to the

emergence of energy-aware computing systems,

where energy, or power, is a first-class citizen in

the design process [8], [16], [17].

The goals of energy-aware system design include

saving energy without sacrificing performance, and

supporting flexible, dynamic trade-offs between

energy consumption and performance. Accurate

models of energy consumption and performance
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are prerequisites for any foundation for the design

of energy-aware systems.

Such models are also prerequisites for the appli-

cation of control theory to energy-aware systems.

We advocate the use of control theory in this

context, as it has the potential to yield advanced

controllers that dynamically manage the energy-

performance trade-off in an optimal manner.
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Figure 1. Plant with feedback controller

Applying control theory to computing systems

is a three-step process [7]: (1) discover an accurate

model of the plant (i.e., the computing system to be

controlled) using system identification; (2) use the

plant model to design and implement a feedback

controller for the plant as shown in Figure 1;

and (3) apply the controller to real systems (i.e.,

backup system, mail system, etc.) and validate the

functionality of the whole system experimentally.

The process of model discovery for energy-

aware systems, in advance of controller design, is

complicated by a number of factors. We recently

concluded an extensive year-long study [12] of

the energy consumption and performance of a

file-compression server, a representative workload

involving both substantial CPU usage and disk I/O.

We analyzed the effects of several input param-

eters, including compression algorithm, compres-

sion level, file type, persistent storage media, CPU

Dynamic Voltage and Frequency Scaling (DVFS)

level, and disk I/O scheduler—all under the Linux

operating system.

Our experimental results identified three factors

that complicate the system’s energy and perfor-



mance profiles: (1) nonlinearity, which makes the

application of traditional control-theoretical tech-

niques challenging; (2) instability, referring to sig-

nificant fluctuations in outputs when inputs are held

relatively constant; and (3) multi-dimensionality,

referring to the vast number of possible inputs,

outputs, and internal system states.

In this paper, we present a model-discovery

methodology that mitigates the complexities we

identified in [12] to achieve accurate plant models

of energy-aware systems. Key to our approach is to

use only numeric model parameters as inputs and

outputs, and treat non-numeric model parameters

as part of the workload. Our methodology favors

MIMO models over a collection of SISO models,

when the system’s inputs and outputs are cou-

pled in a nontrivial way. Our experimental evalua-

tion, performed on a representative file-compressor

server, validates our approach and shows that

MIMO models are consistently more accurate than

SISO ones.

II. RELATED WORK

Control theory has been applied to database

systems [4], storage systems [10], [11], Web

servers [3], [15], and data centers [13], [19]–[21] to

provide QoS (e.g., performance and power) guar-

antees. Abdelzaher et al. surveyed the application

of feedback control to software systems [1]. Most

of the models considered in these approaches are

SISO, with only a few using MIMO.

Hellerstein et al. cconstructed a MIMO model

for Apache Web servers, and proved that a single

MIMO model outperformed a collection of SISO

models in terms of prediction and control [3]. The

MIMO advantage was also observed by Wang et

al. in the context of high-density servers [19]. We

obtained similar results for compression systems

attempting to deal with the trade-offs between

power consumption and performance.

III. METHODOLOGY

This section describes our methodology for sys-

tem identification. Due to space limits, we do not

discuss controller design and implementation in

this paper.

We discuss several decisions that need to be

made as part of system identification. For each

system identification, we obtain a dataset by vary-

ing the inputs as described below and measuring

the outputs. The first half of each dataset is used

for training (i.e., system identification). We use the

pem command in MATLAB’s System Identifica-

tion Toolbox [14] to identify the system under the

following state-space model:

x(n+ 1) = Ax(n) +Bu(n) +Kw(n) (III.1a)

y(n) = Cx(n) +Du(n) + w(n) (III.1b)

where u(n) are the inputs, y(n) are the outputs,

x(n) are the internal states of the plant, and w(n) is

a white Gaussian noise representing uncontrollable

inputs (e.g., execution of default system daemons)

and output measurement errors at time n. Term

x(n+1) is the next internal state of the plant. All

u(n), y(n), x(n), and x(n) are arrays. Matrices A,

B, C, D, and K denote the significance or weight

that each internal state and element in the input,

output, and Gaussian noise has in determining the

next state and output of the system.

We validate the model using the second half

of the dataset. By computing the coefficient of

determination R2, we measure how accurately the

model predicts the measured values in the second

half of the dataset.

Sampling time: The sampling time is the

period of time at which sensors measure the current

system status. It is chosen based on the time

scale of the behavior of the system of interest,

in order to obtain an accurate system model. We

experimentally observed that a sampling time of

10 seconds works well for our compression system.

Model order: We use state-space models. For

such models, the model order is the number of

components (dimensions) of the state space. A

larger order usually results in a model with higher

accuracy but greater complexity; conversely, a

smaller order usually results in a simpler model but

with lower accuracy. Therefore, choosing a suitable

model order is a trade-off between model accuracy

and model complexity. In our experiments, we

choose the model order in a systematic way as

follows: start with a first-order model, repeatedly

increase the order by one, and terminate when the

improvement in prediction accuracy is less than

10%. This procedure leads to the orders given in

Table I.
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Model type: As shown in Figure 2, the system

model has two inputs (CPU frequency and Number

of workers) and two outputs (Power consumption

and Performance). The system can be modeled

using one MIMO model as shown in Figure 2(a), or

two separate SISO models as shown in Figure 2(b).

SISO1 is achieved by fixing the number of worker

threads to 2 (average number of CPU cores), while

SISO2 is achieved by fixing the CPU frequency at

level 4 (the average of the possible DVFS values).

We evaluate all of these models in Section IV.

Input space: To obtain accurate models, the

input sequences used in the experiments must thor-

oughly exercise the system’s possible behaviors in

the input range of interest. A simple approach that

works well in practice is to vary each input sinu-

soidally, using relatively prime periods for different

inputs [7]. We approximate this approach using

simpler triangular instead of sinusoidal waves. For

our file-compressor system, we vary the CPU fre-

quency across all 8 possible values, with a period of

19 seconds. We vary the number of worker threads

from 1 to 4 (there are 4 cores), with a relatively

prime period of 13 seconds.

Normalization: The model is usually esti-

mated using Recursive Least-Squares (RLS) es-

timation [6]. If the measurements have a large

constant component, RLS tries to accurately pre-

dict this constant component and may thus fail to

capture relatively small output changes due to input

changes [9]. Therefore, both the input and output

values should be normalized to zero-mean before

applying the RLS technique.

IV. EVALUATION

In this section, we introduce our experimental

setup, compare MIMO and SISO prediction ac-

curacies, and provide an in-depth analysis of our

results.

We conducted our experiments on a Dell Pow-

erEdge R710 server with one quad-core 2.395GHz

Intel R© XeonTM Nehalem CPU with dynamic fre-

quency and voltage scaling (DVFS) support: 8

different frequencies with a difference of 1MHZ for

the top 2 frequencies, and a difference of 133MHZ

for the remaining 7 frequencies with Turbo Mode

on. The machine has 24GB RAM, out of which we

only used 2GB to force I/O to take place. We use

the SAS disk of the server for the experiments. The

Number of Performance

PowerCPU

Frequency

Workers

Consumption

MIMO

(a) MIMO model

Number of Performance

PowerCPU

Frequency

Workers

Consumption
SISO1

SISO2

(b) Two separate SISO models

Figure 2. Our MIMO model and two-SISO models

server was running the Linux 2.6.18 kernel with

the acpi_cpufreq module installed to enable

software control of the CPU frequency.

We connected the server to a WattsUP Pro ES

in-line power meter [5], which measures the power

drawn by a device plugged into the meter, with

resolution of 0.1 Watts. We used the wattsup

Linux utility to download the recorded data from

the meter over a USB interface to the test machine.

For our file-compression server, the worker

threads keep compressing files until all files are

compressed. We use a set of 8,000 text files pro-

duced by decompressing all Linux kernel tar-balls

and stripping non-ASCII characters. Each of the

text files is 10MB in size. Compression is per-

formed by gzip at compression level 7, which is

rather CPU-intensive, and hence creates a stronger

relationship between the number of workers and

performance.

We built the MIMO model from a dataset, called

the multi-dimensinal data, obtained by varying both

inputs and recording, for each sampling period, the

average power consumption during the sampling

period and the number of blocks written to disk

during the sampling period. We built the SISO

models from datasets called uni-dimensional data,

obtained similarly except that one input is varied

and the other input is fixed.

In the following discussion, we use accuracy

numbers from the first run as representative num-

bers unless otherwise noted. We show the accuracy

of the SISO models evaluated with uni-dimensional

data in Figures 3(a) and 3(b). The two SISO models

have good prediction accuracy (77% and 86%,

respectively). This demonstrates that when CPU
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(a) SISO1 model evaluated with uni-dimensional data
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(b) SISO2 model evaluated with uni-dimensional data
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(c) MIMO model evaluated with multi-dimensional data for

Power
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(d) MIMO model evaluated with multi-dimensional data for

Performance

Figure 3. Evaluation for one run of a MIMO model and two separate SISO models. Ts is the sampling time we use in the

experiments.

frequency is the only varying input, it is a good

indicator for power consumption; when the number

of workers is the only varying input, it is a good

indicator for performance. We also achieved an

accuracy of 67% for number of workers vs. power,

and an accuracy of 36% for CPU frequency vs.

performance. This indicates that both inputs are

coupled with both outputs in a nontrivial way. The

accuracy of the MIMO model evaluated with multi-

dimensional data appears in Figures 3(c) and 3(d).

The accuracy is 78% and 74% for power and

performance, respectively.

Although the SISO models achieve good accu-

racy when evaluated on uni-dimensional data (i.e.,

one input is held constant), in real usage of the sys-

tem, we want to control both inputs. How accurate

are SISO controllers in this context? To answer this

question, we evaluate the SISO models with multi-
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Model Fixed Input Order Accuracy

MIMO N/A 3
Power: 77%

Perf: 76%

SISO1 1 worker 1 Power: 73%

SISO1 2 workers 1 Power: 73%

SISO1 3 workers 1 Power: 73%

SISO1 4 workers 1 Power: 71%

SISO2 2395MHz Freq 1 Perf: 43%

SISO2 1995MHz Freq 2 Perf: 61%

SISO2 1596MHz Freq 1 Perf: 44%

Table I

EVALUATION OF MIMO AND SISO MODELS WITH

MULTI-DIMENSIONAL DATA.

dimensional data (specifically, with the second half

of the multi-dimensional data). As expected, the

SISO models generally have lower accuracy in this

setting, because they do not take the variation of

the other input into consideration, and both inputs

are coupled with both outputs in the system, to

varying degree. We ran each experiment multiple

times and report averages unless otherwise noted.

The results are summarized in Table I, quantify

this effect and also demonstrate that, in some

cases, the accuracy of the SISO model evaluated

with multi-dimensional data is very sensitive to

the value chosen for the constant input in the uni-

dimensional data used to build the SISO model.

Because real-world data is multi-variate, it suggests

that SISO models are less suitable for production

settings.

For example, in the case of SISO1, when the

number of workers is fixed at 4, the power pre-

diction accuracy is worse than that of the MIMO

model. For other fixed numbers of workers, the

accuracy results are comparable. In the case of

SISO2, for all cases, the accuracy results are worse

than that of the MIMO model. This shows that if

the two separate SISO models are generated with

appropriate training data, they can have accuracy

comparable with that of the MIMO model for some

of the metrics (e.g., power), but the two separate

SISO models generally have lower accuracy than

the MIMO model. Overall, MIMO models are

more resilient across a wide range of training data.

V. CONCLUSIONS

As we have shown [12], even simple systems

that de/compress files exhibit complex performance

and energy profiles. Control theory holds great

promise for the automated and optimal control

of such energy-aware systems. Before designing a

suitable controller, one must first identify a system

model.

In this paper, we have presented a methodology

for system identification, applied it to a represen-

tative file-compressor server, and experimentally

evaluated the accuracy of SISO and MIMO models

of power consumption and performance. Although

potentially more complex, MIMO offers consis-

tently higher prediction accuracy (76–77%). SISO

was at best comparable to MIMO (73%), and at

worse close to half as accurate (43%). Collectively,

our results help to understand, quantify, and com-

pare the behavior of MIMO and SISO models of

energy-aware systems under representative work-

loads.

Based on the extensive data set we collected

in [12], we plan to evaluate additional MIMO

models, especially those with more than two input-

s/outputs, and those that explore other dimensions

(e.g., different compression algorithms and com-

pression levels). We also plan to design and imple-

ment actual SISO/MIMO controllers and evaluate

their ability to trade off power consumption and

performance. An important research question is to

quantify the costs (e.g., CPU, memory, power) for

executing more complex MIMO-based controllers,

and to investigate the effect of the model order on

these costs.
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