
1

1

Efficient Data Handling in Large-Scale
Sequence Database Searches

H. Lin†, X. Ma†, W. Feng*,
A. Geist‡, and N. Samatova‡

†NCSU *Virginia Tech ‡ORNL

2

Outline

 Sequence database search
 Parallel BLAST background
 mpiBLAST & pioBLAST
 New release: mpiBLAST-pio
 GreenGene: search NT against NT practice

(SC|05, StorCloud Demo)

2

3

Sequence Database Search is Critical
for Biomedical Science

 Routinely used in biomedical research
 Search similarities between query sequences and sequence

database
 Predict structures and functions of new sequences

 Analogous to web search engines (e.g. Google)

Score (Similarity)Closeness & rankSorted by

DB sequences similar to
the query

Related web pagesOutput

Known sequence databaseInternetSearch space
Query sequence(s)Keyword(s)Input

Sequence DB SearchWeb Search Engine

4

Challenge for Sequence DB Search

Sequence databases are
growing exponentially in size

Sequence DB Search is Hampered by the Growing Gap
between Sequence Growth and Processor Memory

Because of this gap: there is a lot of repeated I/O introduced by loading
sequence data back and forth from the file system to the memory. This
adversely affects the performance.

3

5

BLAST: At the Core of Sequence DB
Search

 Widely used search tool:
 Approximately 75%-90% of all compute cycles in life

sciences are devoted to BLAST searches
 But, it is:

 Computationally demanding, O(n2)
 Requires huge database to be stored in memory
 Generates gigabytes of output file for large database

searches
 Parallel BLAST as a means to address

computational challenge

6

BLAST Parallelization:
Query Segmentation

>gi|3123744|dbj|AB013447.1|AB013447
TTGGTATCCACGGAAGAGAGAGAAAATGTTGGGAATTTTCAGCGGAC
GTATAGTATCATTGCCGGAAGAGCTGGTGGCTGCCGGGAACC

>gi|221778|dbj|D00026.1|HS2HSV2P4
GGAGGGTGGCTGGTGGGTATTGGCGGCCCGACCGATCTGCCCCGAC
CGACGGCTCCTGCCACCCGAACATG

>gi|7328961|dbj|AB032155.1|AB032154S2
TTTTTTTCTTGATGCTGAAATCTATCCAAACATCACCAGTCCTCACGAG
TCCTTGACCAAATTCTTGCTTTCTGGCACAATCTGAAGCCCAAAGGC

Database

>Perilla Frutescens CDS 0001
TTGGTATCCACGGAAGAGAGAGAAAATGTTGGGAATTTTCAGCGGAC
GTATAGTATCATTGCCGGAAGAGCTGGTGGCTGCCGGGAACC

>Perilla Frutescens CDS 0002
GGAGGGTGGCTGGTGGGTATTGGCGGCCCGACCGATCTGCCCCGAC
CGACGGCTCCTGCCACCCGAACATGTGATAGAAAGGAQQQQQQQQ

>Perilla Frutescens CDS 0003
TTTTTTTCTTGATGCTGAAATCTATCCAAACATCACCAGTCCTCACGAG
TCCTTGACCAAATTCTTGCTTTCTGGCACAATCTGAAGCCCAAAGGC

Queries

Worker Nodes

W. Feng at. el. “mpiBLAST on the GreenGene Distributed
Supercomputer”, SC|05

4

7

Pros and Cons of Query Segmentation

 Advantages
 Low parallelization overhead
 Linear speedup when database fits into single

processor memory
 Disadvantages

 Suffers repeated I/O when database cannot fit into
main memory

 Resource under-utilization / load imbalance when
#queries smaller than or comparable to #processors

8

BLAST Parallelization:
Database Segmentation

>gi|3123744|dbj|AB013447.1|AB013447
TTGGTATCCACGGAAGAGAGAGAAAATGTTGGGAATTTTCAGCGGAC
GTATAGTATCATTGCCGGAAGAGCTGGTGGCTGCCGGGAACC

>gi|221778|dbj|D00026.1|HS2HSV2P4
GGAGGGTGGCTGGTGGGTATTGGCGGCCCGACCGATCTGCCCCGAC
CGACGGCTCCTGCCACCCGAACATG

>gi|7328961|dbj|AB032155.1|AB032154S2
TTTTTTTCTTGATGCTGAAATCTATCCAAACATCACCAGTCCTCACGAG
TCCTTGACCAAATTCTTGCTTTCTGGCACAATCTGAAGCCCAAAGGC

Database

>Perilla Frutescens CDS 0001
TTGGTATCCACGGAAGAGAGAGAAAATGTTGGGAATTTTCAGCGGAC
GTATAGTATCATTGCCGGAAGAGCTGGTGGCTGCCGGGAACC

>Perilla Frutescens CDS 0002
GGAGGGTGGCTGGTGGGTATTGGCGGCCCGACCGATCTGCCCCGAC
CGACGGCTCCTGCCACCCGAACATGTGATAGAAAGGAQQQQQQQQ

>Perilla Frutescens CDS 0003
TTTTTTTCTTGATGCTGAAATCTATCCAAACATCACCAGTCCTCACGAG
TCCTTGACCAAATTCTTGCTTTCTGGCACAATCTGAAGCCCAAAGGC

Worker Nodes
Queries

W. Feng at. el. “mpiBLAST on the GreenGene Distributed
Supercomputer”, SC|05

5

9

Pros and Cons of Database
Segmentation

 Advantages
 Fitting large database into aggregate memory
 Able to utilize large machines regardless of

#queries
 Disadvantages

 Higher parallel search overhead, local results need
to be merged globally

 Challenge
 Reduce result merging & processing overhead

10

mpiBLAST: A Specific Implementation
of Database Segmentation

 Open-source parallel BLAST developed at
LANL:
 http://mpiblast.lanl.gov or http://www.mpiblast.org

 Increasingly popular: more than 10,000
downloads in less than 2 years

 Integrated with NCBI BLAST
 Based on database segmentation
 Performance

 Achieves super linear speedup when using small #
processors

 Problem: overhead in data handling limits scalability

6

11

mpiBLAST System Design

 Master-slave model: one master, p-1 workers
 Searching done in workers

 Search all queries against a subset of DB frags
 Generate partial results – meta data of alignments

(ASN.1 format, include seq id, scores, etc.)
 Output processing done in master

 Merge partial results from all workers
 Fetch correspondent result sequence data
 Compute and output alignments

12

mpiBLAST 1.2 Input
 Databases partitioned statically before search

 Inflexible
 execution time sensitive to # fragments
 re-partitioning required to use different # procs

 Management overhead
 generating large number of small files, hard to manage, migrate and

share

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 50 100 150 200

Number of Fragments

T
o

ta
l

E
xe

cu
ti

o
n

 T
im

e

Fragments sensitivity test

- Search 150k queries against nr
database

- Using 32 processors

Execution Time Vs. # Fragment

7

13

mpiBLAST 1.2 Output

Master

result 1
result 2
result 3

….

Alignment1 Alignment2 Alignment3

Worker1

Worker2

Worker3

Seq id
Seq data

Serialized by the master
Global output file

Master must cache all results

result 1

result 2

result 3

DB Frag

DB Frag

DB Frag

Seq data sent over network

14

mpiBLAST 1.2 Scalability

 Consequence of inefficient data handling:
rapidly growing non-search overhead as
 No. of procs increases
 Output data size increases

0

500

1000

1500

2000

2500

3000

3500

4000

4500

4 8 16 32 64

Number of Processors

Ti
m

e
(S

ec
on

ds
)

Other time

Search time

Execution Time vs. # Procs

-Search 150k queries against nr

- Vary number of processors

- Database evenly partitioned
according to # processors

8

15

pioBLAST

 Research prototype of efficient parallel BLAST
developed at ORNL & NCSU

 Built on top of mpiBLAST1.2
 Apply parallel/collective I/O techniques

 Enable dynamic partitioning
 Parallel database input and result output

 Highly efficient result processing
 Workers compute alignments in parallel
 Workers buffer and write local output in parallel
 Enhanced worker-master communication for reducing

data transfer volume

16

Dynamic Partitioning of pioBLAST
 No pre-partitioning

 One single database image to search against
 Virtual fragments generated dynamically at run time

 Workers read inputs in parallel with MPI-IO interface
 Fragment size configurable at run time

 Easily supports dynamic load balancing

Worker1

Frag1

Frag1 Frag2

Global Sequence Data

Worker2

Frag2

Worker3

Frag3

Worker n

FragN

Frag3 FragN

9

17

Output Processing of pioBLAST

Master

Worker1
result 1.1
result 1.2
result 1.3

1.1 1.2 1.3

Worker2
result 2.1
result 2.2
result 2.3

2.1 2.2 2.3

Worker3
result 3.1
result 3.2
result 3.3

3.1 3.2 3.3

1.1 1.22.1 2.2 2.33.1 3.2

scores, sizes output offsets

Global output file

Reduce
communication

DB Frag DB Frag DB Frag
Processing and

caching results in
parallel

Collective writing: I/O
in parallel

18

mpiBLAST 1.2 vs. pioBLAST:
Node Scalability

 Platform: SGI Altix at ORNL
 256 processors (1.5GHz Itanium2), 8GB memory/proc, XFS

 Database: nr (1GB)
 Node scalability

 mpiBLAST: non-search overhead increases fast
 pioBLAST: non-search time remains low

0

500

1000

1500

2000

2500

3000

3500

4000

4500

m
p
i-
4

p
io

-4

m
p
i-
8

p
io

-8

m
p
i-
16

p
io

-1
6

m
p
i-
32

p
io

-3
2

m
p
i-
64

p
io

-6
4

Program-No. of processes

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

Search time Other time

Search 150k NR queries on different #procs

10

19

mpiBLAST 1.2 vs. pioBLAST:
Output Scalability

 Same platform and database
 Varied query size to generate different output size

0

500

1000

1500

2000

2500

3000

3500

4000

m
pi-1

1M

pio
-1

1M

m
pi-4

7M

pio
-4

7M

m
pi-9

6M

pio
-9

6M

m
pi-1

53M

pio
-1

53M

Program-Output Size

E
xe

cu
ti

o
n

 T
im

e
(s

)

Search Other

Search different #query seqs on 64 procs

20

mpiBLAST Evolves: v1.4

 Exact e-value statistics
 Improved result processing

 Reduce worker-master communication by packing
partial biosequences along with ASN.1 results

 Alleviate master bottleneck with query pipe-lining
 Not ready for the large DB search

 Output processing still serialized
 Partial results and result sequences data for a single

query could be huge (gigabytes)
 Performance

 Efficient in handling queries with small output
 Hang or perform slow for queries with large output

11

21

mpiBLAST + pioBLAST =
mpiBLAST-pio

 Highly efficient, open source parallel BLAST (available
at http://mpiblast.lanl.gov/)

 Joint effort between mpiBLAST and pioBLAST
research teams

 Current release based on mpiBLAST 1.4
 Exact e-value statistics
 Keep scheduling (query pipelining) and data distribution

 Efficient parallel output processing from pioBLAST
 Worker compute and buffer local output in parallel
 Non-collective parallel write to better support query pipelining
 Modifications on NCBI BLAST less than 30 lines
 Support all but anchor output formats

22

mpiBLAST-pio Meet The Grand
Challenge: searching NT vs. NT

 SC|05 StorCloud demo (Nov. 13 - Nov. 17)
 Team

 Institutions: LANL, NCSU, U. Utah, and Virginia Tech
 Vendors: Intel, Panta Systems, and Foundry Networks

 Sequencing NT against itself (16GB raw size)

 Why?
 Provide insightful knowledge to catalog NT database
 Demonstrate scalability of mpiBLAST(pio) to larger problem
 Meet the computation challenge with power of distributed

parallel computing
 How?

 GreenGene Distributed Supercomputer
 > 3000 processors from 4 distributed sites of super computers

12

23

GreenGene Distributed Supercomputer

 How?

Intel
(Dupont)

SC2005
Showroom

Floor

U.Utah

Va Tech

W. Feng et al., “mpiBLAST on the GreenGene Distributed Supercomputer”, SC|05

24

Combine query segmentation and
database segmentation

NT Replica NT Replica

GroupMaster GroupMaster GroupMaster

SuperMaster

NT Replica

13

25

Lessons Learned from NT vs NT Search

 Results
 Finish 526,000 sequences (1/7 NT) in one day

 Single supercomputer not enough
 Database segmentation is necessary to deal with

“Hard Queries” – parallelize the computation
 Case 1: 122k single query, take 64 procs 7 hours to

finish, 1.8G output size (448hrs on single processor)
 Case 2: 2M single query, not finished on 128 procs

within 12 hours
 mpiBLAST-pio demonstrate capability of

conducting large database against database
sequence alignment

26

Acknowledgements
 The work of pioBLAST was funded in part or in full

by the US Department of Energy’s Genomes to Life
program under the ORNL-PNNL project,
”Exploratory Data Intensive Computing for Complex
Biological Systems”.

 The work of integrating data access optimizations of
pioBLAST into mpiBLAST-pio was supported through
Los Alamos National Laboratory contract W-7405-
ENG-36.

 Other mpiBLAST-pio development contributors
Jeremy Archuleta (LANL), Avery Ching (Northwestern),
Pavan Balaji (OSU)

14

27

References

 “Efficient Data Access for Parallel BLAST,”
19th Int’l Parallel & Distributed Processing
Symp., April 2005.

 “The Design, Implementation, and Evaluation
of mpiBLAST” Best Paper: Applications Track,
4th Int’l Conf. on Linux Clusters, Jun. 2003.

 “mpiBLAST: Delivering Super-Linear Speedup
with an Open-Source Parallelization of
BLAST,” Pacific Symp. on Biocomputing, Jan.
2003.

