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Background
 
 
 

 
Fast Fourier Transform (FFT)
•	A data parallel scientific algorithm belonging to a family of  

computations known as spectral methods
•	The figure above depicts the Cooley-Tukey method applied to a 16-pt FFT. Input 

is organized in row-major order. In (a), independent sub-FFTs are calculated 
 per column. The twiddle multiplication stage is shown in (b) where a 
 point-wise multiplication is performed on each element of the input array. 
Matrix transpose occurs in (c) where elements across the diagonals are  
exchanged. Finally, independent sub-FFTs are calculated again in (d). 

Graphics Processors
•	Massively parallel architectures suitable for data-parallel algorithms
•	Achieving high-performance on GPUs requires exploration of an 

optimization space. The optimization process is complex 
and rarely behaves in an isolated manner. This problem is further  
exacerbated by architectural differences across vendors and  
GPU generations.

Approach 
 
Apply optimizations to graphics processors in isolation  
and in concert to characterize machine-level behavior.

Application & Experimental Testbed
•	1D FFT for N = 16, 64, 256
•	AMD Radeon HD 6970, AMD Radeon 7970 
NVIDIA Tesla C2075, NVIDIA Tesla K20c

Results 
For brevity, we depict our results for 
N = 16 on AMD Radeon HD 7970
and NVIDIA Tesla K20c only.
 

In Isolation
•	On-chip memory optimizations 

(RP, LM-CC, LM-CT) highly 
effective for Radeon HD 7970, but 
not so much for K20c.

 

In Concert
•	RP + LM-CM combined with 
8- or 16-byte vector access and
scalar arithmetic (VASM) 
and constant memory (CM-K) 
effective for all architectures

Future Work
•	Adapt work to other parallel processors, e.g. multi-core CPUs, FPGAs, and the Intel Many In-

tegrated Core (MIC). Identify vendor-agnostic and vendor-aware optimizations and apply in 
the context of an optimized, multi-platform FFT library for heterogeneous computing.

Insights & Conclusions 
 
Despite radical architectural differences across GPU vendors and generations, 
we’ve identified a set of optimizations applicable for FFT for AMD and NVIDIA
GPU architectures. These optimizations are as follows.

•	RP (Register Preloading) - All data elements are first preloaded onto the register 
file of the respective GPU. Computation is facilitated solely on registers.

•	CGAP (Coalesced Global Access Pattern) - Threads access memory contiguously (the kth thread accesses memory element k)
•	VASM2/4 (Vector Access, Scalar Math, float{2/4}) - Data elements are loaded as the listed vector type. Arithmetic operations 
are scalar (float x float).

•	LM-CM (Local Memory, Communication Only) - Data elements are loaded into local memory only for communication. Threads 
swap data elements solely in local memory.

•	CM-K (Constant Memory - Kernel Argument) - The twiddle multiplication stage of FFT is precomputed on the CPU and stored in 
GPU constant memory for fast look up.
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Furthermore, performance of 1D FFTs on graphics processors 
is limited by global memory data transfer comprising up to 
99% of the execution time on our optimized implementations. 
Our optimized implementations deliver speed-ups as high as 
31.5 over a baseline GPU implementation, and 9.1 over a multi- 
threaded FFTW CPU implementation with AVX vector extensions.

Goal: Accelerate FFT across a set of heterogeneous processors

Motivation
•	FFT  is identified as a key computational idiom for scientific computing [1]. To date, FFTW is  

arguably the most popular FFT library, but written only for CPUs.
•	Heterogeneous processors such as the graphics processing unit (GPU) provide a rich set of  
computational resources. The following figures compare performance across CPUs and GPUs in 
(1) peak compute and peak bandwidth and (2) against popular FFT libraries for N = 16, respectively.   
GPUs have significantly higher computational throughput than CPUs outperforming 
FFTW-based codes by factors as high as 6.8!

1.	K. Asanovic et al., “A View of the Parallel Computing Landscape,”  Communications of the ACM, Oct. 2009.
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