
Towards a Performance-Portable FFT Library for
Heterogeneous Processors
Student: Carlo del Mundo <cdel@vt.edu> (ECE)
Advisor: Dr. Wu-chun Feng <feng@cs.vt.edu> (ECE, CS)

Publications
C. del Mundo and W. Feng, “Towards a Performance-Portable FFT Library for Heterogeneous Computing,”
IEEE International Symposium on Workload Characterization (IISWC), Portland, Oregon, USA, Sept. 2013. (Submitted April 2013.)

C. del Mundo, V. Adhinarayanan, and W. Feng, “Accelerating Fast Fourier Transform for Wideband Channelization,”
IEEE International Conference on Communications (ICC), Budapest, Hungary, June 2013. (Accepted for publication in January 2013.)

Background

Fast Fourier Transform (FFT)
•	A data parallel scientific algorithm belonging to a family of

computations known as spectral methods
•	The figure above depicts the Cooley-Tukey method applied to a 16-pt FFT. Input

is organized in row-major order. In (a), independent sub-FFTs are calculated
 per column. The twiddle multiplication stage is shown in (b) where a
 point-wise multiplication is performed on each element of the input array.
Matrix transpose occurs in (c) where elements across the diagonals are
exchanged. Finally, independent sub-FFTs are calculated again in (d).

Graphics Processors
•	Massively parallel architectures suitable for data-parallel algorithms
•	Achieving high-performance on GPUs requires exploration of an

optimization space. The optimization process is complex
and rarely behaves in an isolated manner. This problem is further
exacerbated by architectural differences across vendors and
GPU generations.

Approach

Apply optimizations to graphics processors in isolation
and in concert to characterize machine-level behavior.

Application & Experimental Testbed
•	1D FFT for N = 16, 64, 256
•	AMD Radeon HD 6970, AMD Radeon 7970
NVIDIA Tesla C2075, NVIDIA Tesla K20c

Results
For brevity, we depict our results for
N = 16 on AMD Radeon HD 7970
and NVIDIA Tesla K20c only.

In Isolation
•	On-chip memory optimizations

(RP, LM-CC, LM-CT) highly
effective for Radeon HD 7970, but
not so much for K20c.

In Concert
•	RP + LM-CM combined with
8- or 16-byte vector access and
scalar arithmetic (VASM)
and constant memory (CM-K)
effective for all architectures

Future Work
•	Adapt work to other parallel processors, e.g. multi-core CPUs, FPGAs, and the Intel Many In-

tegrated Core (MIC). Identify vendor-agnostic and vendor-aware optimizations and apply in
the context of an optimized, multi-platform FFT library for heterogeneous computing.

Insights & Conclusions

Despite radical architectural differences across GPU vendors and generations,
we’ve identified a set of optimizations applicable for FFT for AMD and NVIDIA
GPU architectures. These optimizations are as follows.

•	RP (Register Preloading) - All data elements are first preloaded onto the register
file of the respective GPU. Computation is facilitated solely on registers.

•	CGAP (Coalesced Global Access Pattern) - Threads access memory contiguously (the kth thread accesses memory element k)
•	VASM2/4 (Vector Access, Scalar Math, float{2/4}) - Data elements are loaded as the listed vector type. Arithmetic operations
are scalar (float x float).

•	LM-CM (Local Memory, Communication Only) - Data elements are loaded into local memory only for communication. Threads
swap data elements solely in local memory.

•	CM-K (Constant Memory - Kernel Argument) - The twiddle multiplication stage of FFT is precomputed on the CPU and stored in
GPU constant memory for fast look up.

0

50

100

150

200

250

OursAMD APP FFTAppleFFTOursCUFFTAppleFFTFFTW

G
FL

O
PS

Intel i5-2400 (CPU)

NVIDIA Tesla C2075 (GPU)

AMD Radeon HD 7970 (GPU)

35

97
111

184

226

139

240

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

x

1 1 1 1

1 -i -1 i

1 -1 1 -1

1 i -1 -i

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

(a) (b) (c)

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

(d)

RP CGAP IL

LU CSE VASM

VAVM CM LM-CM

0

500

1000

1500

2000

2500

3000

3500

4000

Intel CPUsNVIDIA GPUsAMD GPUs

3789

2703

1200

3090

1581

933

125 122 55Pe
ak

 P
er

fo
rm

an
ce

, S
P

(G
FL

O
PS

)

HD 7970

HD 6970

HD 4870

GeForce 680

GeForce 580

GeForce 280

i7-3770K

i7-2600K

i7-960

0

50

100

150

200

250

300 Peak M
em

ory Bandw
idth (G

B/s)

264

176

115

192 192

141

25 21 25

GFLOPS (Peak)

GB/s (Peak)

0

10

20

30

40

50

60
Twiddles

Transpose

Cols

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Ba
se

lin
e

LM
-C

T
LM

-C
C

LM
-C

MRP

VA
VM

VA
VM

8

VA
VM

4
VA

VM
2

VA
VM

16
VA

SM
16

VA
SM

8
VA

SM
4IL

CS
ELU

CG
A

P
CM

-L
CM

-K

0

5

10

15

20

25

30

35
Twiddles

Transpose

Cols

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Ba
se

lin
e

LM
-C

T
LM

-C
C

LM
-C

MRP

VA
VM

VA
VM

8

VA
VM

4
VA

VM
2

VA
VM

16
VA

SM
16

VA
SM

8
VA

SM
4IL

CS
ELU

CG
A

P
CM

-L
CM

-K

0

1

2

3

4

5

6

Ex
ec

ut
io

n
Ti

m
e

(m
s)

RP+LM-CM

LM-CT
LM-CC

RP+LM-CM

LM-CT
LM-CC

RP+LM-CM

LM-CT
LM-CC

RP+LM-CM

LM-CT
LM-CC

VASM2 VASM4 VAVM2 VAVM4

Kernel ExecutionKernel Load/
Store

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Kernel ExecutionKernel Load/
Store

RP+LM-CM

LM-CT
LM-CC

RP+LM-CM

LM-CT
LM-CC

RP+LM-CM

LM-CT
LM-CC

RP+LM-CM

LM-CT
LM-CC

VASM2 VASM4 VAVM2 VAVM4

Optimizations in Isolation Optimizations in Concert

Te
sl

a
K2

0c
Ra

de
on

 H
D

 7
97

0

RP CGAP VASM CMLM-CM

Furthermore, performance of 1D FFTs on graphics processors
is limited by global memory data transfer comprising up to
99% of the execution time on our optimized implementations.
Our optimized implementations deliver speed-ups as high as
31.5 over a baseline GPU implementation, and 9.1 over a multi-
threaded FFTW CPU implementation with AVX vector extensions.

Goal: Accelerate FFT across a set of heterogeneous processors

Motivation
•	FFT is identified as a key computational idiom for scientific computing [1]. To date, FFTW is

arguably the most popular FFT library, but written only for CPUs.
•	Heterogeneous processors such as the graphics processing unit (GPU) provide a rich set of
computational resources. The following figures compare performance across CPUs and GPUs in
(1) peak compute and peak bandwidth and (2) against popular FFT libraries for N = 16, respectively.
GPUs have significantly higher computational throughput than CPUs outperforming
FFTW-based codes by factors as high as 6.8!

1.	K. Asanovic et al., “A View of the Parallel Computing Landscape,” Communications of the ACM, Oct. 2009.

General
Optimizations

Architecture-Aware
Optimization

Vendor-Agnostic
Optimization

