RUNTIME POWER MODELING TO ENABLE ENERGY OPTIMIZATIONS IN GENERAL-PURPOSE GRAPHICS PROCESSING UNITS

Vignesh Adhinarayanan Ph.D. (CS) Student Synergy Lab, Virginia Tech

MOTIVATION

Supercomputing constrained by power consumption
 > DOE goal: Reach exascale levels, but do not exceed 20 MW

- Typical power requirement for Los Alamos = 66 MW
- Power budget for Trinity supercomputer alone = 15 MW
- Exceeding power budget → Brownouts in Los Alamos
 - Installing and starting ASCI White supercomputer in Livermore may have played a small part in the 2001 rolling California brownouts

MOTIVATION

- Supercomputing constrained by power consumption
 > DOE goal: Reach exascale levels, but do not exceed 20 MW
- Power management necessary to reach exascale goal
 - Given an upper bound on power, maximize performance
 - You can't manage what you cannot measure

MOTIVATION

- Supercomputing constrained by power consumption
 > DOE goal: Reach exascale levels, but do not exceed 20 MW
- Power management necessary to reach exascale goal
 - Given an upper bound on power, maximize performance
- Important to focus on GPGPUs
 - > 60+ systems in Top500 lists
 - > 35% performance share

BACKGROUND

- Total power = Static power + Dynamic power
- Static power: Power consumed at idle state
 - > Affected by temperature

- Dynamic power:
 - > Affected by GPU activity
 - Certain performance counters track dynamic power

GOALS

- What parameters should we use to model power?
 - Example of input parameters: Instructions/s, Memory transactions, Cache hit rate etc.
- What mathematical functions express relationship between input parameters and power?

Approach

Systematically study various parameters and models with a variety of applications

CHALLENGES

- Choosing the "right" applications to train the model
 - > Models can be biased to the applications
- Choosing the "right" events to model
 - ~100 events within the GPU
 - > Can track only 4-8 activities on a real hardware
- Choosing the "right" model
 - Linear mostly sufficient in the past

- Selecting the right applications to train the model
 - Study several applications to see how they stress the various architectural components
 - Collect all relevant metrics
 - Remove redundancy in the dataset
 - Via principal component analysis
 - > Hierarchical clustering to find similarity and difference
 - Choose one benchmark from each cluster

Studied 100+ GPU kernels from 40+ applications to choose 6 dissimilar applications

• Selecting the right performance counters (system activities) to construct the model

SMX																			
Instruction Cache Warn Scheduler Warn Scheduler Warn Scheduler																			
Dispatch Dispatch			Dispatch Dispatch			Dispatch Dispatch			Dispatch Dispatch										
+ +					+ +														
Register File (65,536 x 32-bit)																			
Core	Core	Gore	OP Unit	Core	Core	Core	OP Unit	LDIST	SFU	Core	Core	Core	OP Usiz	Core	Core	Core	OP Unit	LDIST	SFU
Core	Core	Core	OP Use	Com	Core	Core	CP Usik	LDIST	sFU	Core	Core	Com	OP Use	Core	Core	Core	OP Use	LDIST	8FU
Core	Care	Core	OP Usik	Core	Core	Con	OP Unit	10167	SFU	Core	Con	Com	OP Usk	Core	Core	Core	OP Use	LDIST	8PU
Core	Core	Core	OP Unit	Com	Core	Care	CP Unit	LOIST	sru	Core	Care	Com	CP Usk	Com	Core	Care	OP Usik	LDIST	sru
Core	Core	Core	OP Usik	Com	Core	Core	CP Unit	LDIST	SFU	Core	Core	Com	OP Usk	Core	Core	Core	OP Usk	LDIST	SFU
Core	Core	Core	OP Use	Com	Core	Core	CP Unk	LDIST	sfu	Core	Core	Core	OP Unit	Core	Core	Core	OP Use	LDIST	8FU
Core	Care	Core	OP Usik	Com	Core	Core	OP Unit	10157	sFU	Core	Core	Com	OP Unit	Con	Core	Core	OP Unit	LD157	8FU
Core	Core	Core	OP Usik	Com	Core	Core	OP Unit	10197	sru	Core	Care	Core	OP Usik	Core	Core	Core	OP Usk	LOIST	sru
Core	Core	Core	OP Unit	Core	Core	Core	OP Unit	LDIST	SFU	Core	Core	Core	DP Usik	Core	Core	Core	OP Unit	LDIST	seu
Core	Core	Core	OP Unit	Core	Core	Core	OP Unit	LOIST	sru	Core	Core	Core	CP Unit	Core	Core	Corre	OP Usik	LDIST	SPU
Core	Core	Core	CP Use	Core	Core	Core	CP Unit	LDIST	8FU	Core	Core	Com	CP Use	Core	Core	Core	CP Use	LDIST	890
Core	Cone	Corre	OF Use	Com	Core	Cone	CP Use	10151	SPU SPU	Core	Cone	Core	OP Use	Core	Core	Core	CP Use	LOIST	SPU SPU
Core	Core	Core	CP Use	Com	Core	Core	OF Use	10157	570	Com	Core	Con	CP Use	Con	Core	Core	OP U-R	LOUGH	574
Core	Core	Core	OP Usz	Core	Core	Core	DP Unit	LOST	SFU	Core	Core	Core	CP Unit	Core	Core	Core	OP Unit	LDIET	seu
Core	Core	Core	CP U+R	Core	Core	Core	CP Unit	LOIST	SFU	Core	Core	Core	OP Unit	Core	Core	Corre	CP U=R	LDIST	8FU
Interconnect Network																			
64 KB Shared Memory / L1 Cache																			
48 KB Read-Only Data Cache																			
Tex Tex			Tex Tex				Tex Tex		Tex		Tex								
Tex Tex Tex Tex Tex Tex Tex																			

Courtesy: NVIDIA

Invent the Future

System Activity

• Obtain performance counter and power values for several applications and various system activities

- Calculate Person's correlation coefficient between activities and power consumed
- Choose only events showing correlation greater than α (determined empirically)


```
Further limit events chosen
Input: E (Set of events showing high correlation)
Output: S (Set of events to be included in the model)
<u>Algorithm</u>
S \leftarrow Ø
for each event E<sub>i</sub> (in decreasing order of correlation) in set E
       if E<sub>i</sub> can be simultaneously profiled with events in Set S, then
              Calculate Pearson's correlation coefficient \rho_{ii} between
              E<sub>i</sub> and all events S<sub>i</sub> in Set S
              if \rho_{ii} < \rho_{min} for all j, then
                     S \leftarrow S \cup E_i
              end if
       end if
end for
```



```
Further limit events chosen
Input: E (Set of events showing high correlation)
Output: S (Set of events to be included in the model)
<u>Algorithm</u>
        Simultaneously profilable with already chosen events
S ←
for each event E _____ecreasing order of correlation) in set E
      if E<sub>i</sub> can be simultaneously profiled with events in Set S, then
             Calculate Pearson's correlation coefficient \rho_{ii} between
             Ei and all events Si in Set S
             if \rho_{ii} < \rho_{min} for all j, then
                   S \leftarrow S \cup E_i
             end if
      end if
end for
```


- Selecting the right models
 - > After data collection treat as statistical modeling problem
 - Evaluate several mathematical functions

- Regression techniques to model power
- Evaluate different mathematical functions
 - Chosen based on CPU studies

RESULTS

Models		C2075
	Basic	Temp-aware
SLR	17.96	8.59
MLR	11.59	4.49
MLR+I	14.02	6.83
QMLR	14.83	6.42
QMLR+I	19.05	10.31

- Multiple Linear Regression (MLR) model performs significantly better
- Effect of temperature on power is significant

RESULTS

(a) QTC on C2075.

- Phase changes detected correctly
- Scope for improvement in exact power values

RESULTS

Power profile for application-independent models

Invent the Future

(b) Eigen Values on K20c.

Power profile for application-dependent models

CONTRIBUTION

- First accurate instantaneous power model on real GPU systems
 - > 6% mean absolute error on real systems
 - I% error from application-specific models

APPENDIX

CURRENT AND FUTURE WORK

- Develop a DVFS-agnostic model
 - Alternative: Model for each DVFS setting separately, but can be time consuming (ex. 55 settings in NVIDIA Titan)
- Use of DVFS-agnostic model for energy management at runtime
 - > Achieve maximum performance under a power budget

SUMMARY OF RESULTS

•••										
Models		C2075	K20c							
	Basic	Temp-aware	Basic	Temp-aware						
SLR	17.96	8.59	21.67	9.44						
MLR	11.59	4.49	18.66	8.29						
MLR+I	14.02	6.83	14.74	6.14						
QMLR	14.83	6.42	15.46	7.82						
QMLR+I	19.05	10.31	19.56	8.86						

Mean error % - Application-independent models

Mean error % - Application-dependent models

Models		C2075	K20c			
	Basic	Temp-aware	Basic	Temp-aware		
SLR	7.32	2.26	3.39	1.49		
MLR	4.73	1.62	2.64	1.22		
MLR+I	2.94	1.07	2.22	0.92		
QMLR	3.04	1.08	2.24	0.96		
QMLR+I	2.79	1.02	2.17	0.88		

OBJECTIVES

- Which system activity to use?
- What type of mathematical function?
- > Are the models portable across architectures?
- How much overhead?
- > Are application-dependent models necessary?
 - Yes, application-dependent models significantly better
- > How do we overcome associated overheads?

CONCLUSION

- Questions we answer
 - Which system activity to use?
 - Decided by our algorithm
 - Temperature as a factor
 - What type of mathematical function?
 - Linear expressions are better than quadratic expressions
 - > Are the models portable across architectures?
 - No; micro-architecture dependent
 - How much overhead?
 - Negligible overhead for GPU-only application
 - > Are application-dependent models necessary?
 - Generally useful
 - How do we overcome associated overheads?
 - Fewer samples sufficient for modeling at runtime

Related Work

Paper	Modeling Approach	Model Input	Run- time	Real system	Result
Nagasaka et al.	Multilinear Regression	14 Perf. counters	No	Real	4.7% avg. on 47 SDK + Rodinia
Song et al.	Neural Networks	13 Perf. counters	No	Real	2.1% avg. in select CUDA SDK
Abe et al.	Multilinear Regression	10 Perf. counters	No	Real	20% to 30%
McPAT (Lim et al.)	Analytical	10s of parameters	No	Real	7.7% and 12.8% for micro + merge
GPUWattch (Leng et al.)	Analytical + empirical	30 Perf. counters	Yes	Sim.	9.9% and 13.4% on micro + real

