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MOTIVATION

• Supercomputing constrained by power consumption

 DOE goal: Reach exascale levels, but do not exceed 20 MW

• Typical power requirement for Los Alamos = 66 MW

• Power budget for Trinity supercomputer alone = 15 MW

• Exceeding power budget  Brownouts in Los Alamos

– Installing and starting ASCI White supercomputer in Livermore may have 

played a small part in the 2001 rolling California brownouts
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MOTIVATION

• Supercomputing constrained by power consumption

 DOE goal: Reach exascale levels, but do not exceed 20 MW

• Power management necessary to reach exascale goal

 Given an upper bound on power, maximize performance

• You can’t manage what you cannot measure
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MOTIVATION

• Supercomputing constrained by power consumption

 DOE goal: Reach exascale levels, but do not exceed 20 MW

• Power management necessary to reach exascale goal

 Given an upper bound on power, maximize performance

• Important to focus on GPGPUs

 60+ systems in Top500 lists

 35% performance share
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BACKGROUND

• Total power = Static power + Dynamic power

• Static power: Power consumed at idle state

 Affected by temperature

• Dynamic power: 

 Affected by GPU activity

 Certain performance counters track                                  

dynamic power
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GOALS

• What parameters should we use to model power?

 Example of input parameters: Instructions/s, Memory transactions, 

Cache hit rate etc.

• What mathematical functions express relationship 

between input parameters and power?

Approach

Systematically study various parameters and models with a variety of applications
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CHALLENGES

• Choosing the “right” applications to train the model

 Models can be biased to the applications

• Choosing the “right” events to model

 ~100 events within the GPU

 Can track only 4-8 activities on a real hardware

• Choosing the “right” model

 Linear mostly sufficient in the past
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METHODOLOGY

• Selecting the right applications to train the model

 Study several applications to see how they stress the various 

architectural components

• Collect all relevant metrics

 Remove redundancy in the dataset

• Via principal component analysis

 Hierarchical clustering to find similarity and difference 

• Choose one benchmark from each cluster
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METHODOLOGY

Studied 100+ GPU kernels from 40+ applications 

to choose 6 dissimilar applications
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METHODOLOGY

• Selecting the right performance counters (system 

activities) to construct the model

I-cache

inst_issued

Fetch

Decode 

Schedule

Dispatch

Core Inst_integer, inst_fp_32

DP Unit Inst_fp_64

LD/ST Unit Inst_compute_ld_st

SFU Flop_count_sp_special

Register files No direct proxy

Shared Memory Shared_load_transactions, 

shared_store_transactions

L1 cache Local_load_transactions, 

local_store_transactions

Read-only data cache rocache_subp0_gld_thread_count_32b, 

Texture cache Tex_cache_transactions

L2 cache L2_read_transactions, l2_write_transactions

DRAM Dram_read_Transactions, 

dram_write_transactions

Courtesy: NVIDIA
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METHODOLOGY

System Activity
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• Obtain performance counter and power values for 

several applications and various system activities
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METHODOLOGY

• Calculate Person’s correlation coefficient between 

activities and power consumed

• Choose only events showing correlation greater than α
(determined empirically)
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METHODOLOGY

• Only limited events can be simultaneously profiled

 Further limit events chosen
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METHODOLOGY

• Only limited events can be simultaneously profiled

 Further limit events chosen

Highest correlating events first
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METHODOLOGY

• Only limited events can be simultaneously profiled

 Further limit events chosen

Simultaneously profilable with already chosen events 
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METHODOLOGY

• Only limited events can be simultaneously profiled

 Further limit events chosen

Should provide unique information not already available
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METHODOLOGY

• Selecting the right models

 After data collection treat as statistical modeling problem

 Evaluate several mathematical functions
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METHODOLOGY

• Regression techniques to model power

• Evaluate different mathematical functions
 Chosen based on CPU studies
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RESULTS

• Multiple Linear Regression (MLR) model performs 

significantly better

• Effect of temperature on power is significant
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RESULTS

• Phase changes detected correctly

• Scope for improvement in exact power values
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RESULTS

Power profile for application-independent models

Power profile for application-dependent models
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CONTRIBUTION

• First accurate instantaneous power model on real GPU 

systems

 6% mean absolute error on real systems

 1% error from application-specific models
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APPENDIX
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CURRENT AND FUTURE WORK

• Develop a DVFS-agnostic model

 Alternative: Model for each DVFS setting separately, but can be 

time consuming (ex. 55 settings in NVIDIA Titan)

• Use of DVFS-agnostic model for energy management at 

runtime

 Achieve maximum performance under a power budget
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SUMMARY OF RESULTS

Mean error % - Application-independent models

Mean error % - Application-dependent models
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OBJECTIVES

 Which system activity to use?

 What type of mathematical function?

 Are the models portable across architectures?

 How much overhead?

 Are application-dependent models necessary?

• Yes, application-dependent models significantly better

 How do we overcome associated overheads?
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CONCLUSION

• Questions we answer

 Which system activity to use?

• Decided by our algorithm

• Temperature as a factor

 What type of mathematical function?

• Linear expressions are better than quadratic expressions

 Are the models portable across architectures?

• No; micro-architecture dependent

 How much overhead?

• Negligible overhead for GPU-only application

 Are application-dependent models necessary?

• Generally useful

 How do we overcome associated overheads?

• Fewer samples sufficient for modeling at runtime
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RELATEDWORK

Paper Modeling 

Approach

Model 

Input

Run-

time

Real 

system

Result

Nagasaka et al. Multilinear

Regression

14 Perf. 

counters

No Real 4.7% avg. on 47

SDK + Rodinia

Song et al. Neural

Networks

13 Perf. 

counters

No Real 2.1% avg. in 

select CUDA SDK

Abe et al. Multilinear

Regression

10 Perf.

counters

No Real 20% to 30%

McPAT

(Lim et al.)

Analytical 10s of 

parameters

No Real 7.7% and 12.8% 

for micro + merge

GPUWattch

(Leng et al.)

Analytical + 

empirical

30 Perf. 

counters

Yes Sim. 9.9% and 13.4% 

on micro + real


