
Unmixing Remixes: The How and Why of
Not Starting Projects from Scratch

Prapti Khawas, Peeratham Techapalokul, and Eli Tilevich
Software Innovations Lab, Department of Computer Science, Virginia Tech

{prappk19, tpeera4, tilevich}@cs.vt.edu

Abstract—One of the greatest achievements of Scratch as an
educational tool is the eager willingness of programmers to use
existing projects as the starting point for their own projects, a
practice known as remixing. Despite the importance of remixing
as a foundation of collaborative and communal learning, the prac-
tice remains poorly understood, with the Scratch programming
community remaining in the dark about which programming
practices encourage and facilitate remixing. Scratch designers
lack feedback on how the remixing facility is used in the wild.
To gain a deeper insight into remixing, this paper investigates
heretofore unexplored dimensions of remixing: (1) the prevailing
modifications that remixes perform on existing projects, (2) the
impact of the original project’s code quality on the granularity,
extent, and development time of the modifications in the remixes,
and (3) the propensity of the dominant programming practices
in the original project to remain so in the remixes. Our findings
can encourage remixing and improve its effectiveness, benefiting
the educational and end-user programming communities.

Index Terms—Scratch, block-based programming, remixing,
program analysis, code quality, learning

I. INTRODUCTION

The success of Scratch as an educational platform is nothing
short of amazing. The public repository of Scratch projects
contains close to 40 million projects written by computing
learners of all ages coming from all over the world.1Although
it would be hard to pinpoint a single reason for this success,
and most likely it is a combination of factors, one of the design
features of the Scratch blocks editor—“Remix[this project]”—
immediately comes to mind. With a single click of a button,
a Scratch programmer can clone any existing project, with
the clone becoming the start of a development process. This
ability to extend or modify someone else’s work must have a
tremendous positive influence on the productivity and level of
satisfaction of Scratch programmers.

Remixing allows beginner programmers to quickly learn
from, experiment with, and add to existing Scratch projects.
Remixing has been studied previously. Dasgupta et al. have
studied Scratch’s effectiveness in building computational
knowledge through remixing [1]. However, Hermans and
Aivaloglou have established the prevalence of code smells
in Scratch projects and the possibility of poor code quality
inhibiting remixing [2]. Yet another study explored the rela-
tionship between the popularity of remixes and their program
size [3]. Hill and Monroy-Hernández measured modification in

1https://scratch.mit.edu/statistics/

remixes as edit distances [4], whereas we computed modifica-
tions as the script addition metric [5] in our earlier study. Our
work builds on these prior studies, to explore the practice of
remixing from a three-dimensional perspective that combines
the nature of modifications, the impact of code quality, and
the rate of adoption of programming practices.

To truly understand how computing learners take advantage
of remixing requires a comprehensive exploration. Our goal
is not only to increase the likelihood of positive learning
outcomes but also to help improve the design of the language
and its programming environment. By conducting our study,
we seek answers to the following research questions: RQ1:
How do programmers remix Scratch projects? RQ2: How
does the code quality of a project impact the granularity,
volume, and development time for the modifications made in
its remixes? RQ3: Do the prevailing coding idioms of the
original project influence their use in the remixes?

In this study, we collect a set of 160 representative Scratch
projects with 15,010 remixes. We systematically preprocess
and analyze this dataset to answer the research questions
above. This paper contributes a targeted retrospective inquiry
into the practice of remixing in Scratch. Among the novel
aspects of our inquiry is a focus on the observed modifications
in the remixes as a function of the original project’s quality.
Another one is an assessment of the influence of the coding
practices in the original projects on those in their remixes.

II. BACKGROUND AND RELATED WORK

This section provides the technical background and reviews
the most closely related prior work.

Learning via Remixing: Prior work studied the impact of
programmers engaging in project remixing on the development
of their computational thinking (CT). Their findings indicate
that programmers who remix more often then use a larger
range of Scratch blocks, thus displaying their superior under-
standing of CT concepts [1]. Our work focuses on examining
the adoption of advanced programming idioms, the issues of
software quality, and their impact on remixes.

Advanced Scratch Language Features: Variables and
broadcast-receive blocks have been identified as challenging
for students [6]. Another study reports that custom blocks
(“My Blocks”) are the least used ones, based on a study of
Scratch coding practices [7].

Code Quality Metrics: To extend any code, one must
be able to understand it. Code quality is known to posi-

978-1-7281-0810-0/19/$31.00 ©2019 IEEE

tively correlate with software comprehensibility [8], [9]. Our
analyses use the following software quality metrics: LOC:
Straightforward to calculate, Lines Of Code (LOC) measure
program size. Prior research reports the average size of Scratch
projects to be around 140-150 LOC [5], [7]. Large projects
may overwhelm novice programmers trying to understand
them. Halstead’s Volume metric: As part of the well-known
Halstead’s complexity metrics [10], Volume, calculated based
on the number of operators and operands, is reported to
negatively impact readability [11], [12]. Cyclomatic complexity
(CC): CC measures the complexity of control flow [13]. A
strong correlation has been reported between CC and the
student-perceived code difficulty [14], and a weak correlation
between CC and readability [15]. ABC: Introduced by Fitz-
patrick, ABC estimates code complexity based on the number
of assignments, branches, and conditional statements [16].

Code Smells in Scratch: Novice programmers find it hard
to understand and modify Scratch programs with code smells
[2]. The highly prevalent Long Script and Duplicate Code
smells negatively correlate with remix modifications [5].

III. METHODOLOGY

We describe our data collection and research methodology.
Project collection: To obtain diverse and popularly remixed

projects, we fetch 160 trending projects via the API2 that
is used to display them on the Scratch’s “Explore” page.
The collected projects in our dataset have between 1 to 700
remixes. We retrieve the remixes for each project via a remix
tree API3. We collect only the first-level remixes; that is, the
remixes that are the immediate children of one of the 160
subject projects. The final study dataset comprises a total of
15,010 Scratch projects.

Data Preprocessing: For each project, we parse its source
in JSON format into the AST representation that is more easily
amenable for computing quality measures. 3,297 remixes were
disregarded as they contained Scratch 3.0’s new extension
blocks unsupported by our analysis. To detect the differences
between the original project and its remixes, we convert
the AST to a human-readable string to be able to apply
text-similarity techniques inspired by ranking, a text-based
similarity detection technique [17]. We collect statistics on
various types of modification. 8% of the remixes with missing
values were filtered out from the experimental dataset. 1% of
the remaining remixes ended up being modified more than a
100%, indicating that the remix is a brand new project that
shares no similarity with the original project. We conduct
our analysis with and without these projects, as they can
be associated with side-projects [18], in which the remixes
diverge from the original project too much to skew our
remixes-specific findings.

Measuring Modifications: Scratch projects can be remixed
by adding, deleting, or replacing various program elements
as well as by moving scripts around within the workspace,

2https://api.scratch.mit.edu/explore/projects?mode=trending
3https://scratch.mit.edu/projects/〈project id〉/remixtree/bare/

similarly to rearranging code in text-based programs. We refer
to modification size as the total number of blocks in a remix
that are added, deleted, or replaced as compared to the original
project’s code. Large projects are more likely to have remixes
with large modification sizes as compared to smaller projects.
Due to this finding, we measure modifications in percentages
rather than raw numbers: (modificationSize / origProjectSize) × 100.
Since we study how remixes modify their original projects,
we disregard the blocks added to new sprites in the remixes,
as the code quality of the original projects has no impact on
these modifications.

A. General remixing trends (RQ1)

RQ1.1: How do programmers modify the project elements
of remixed projects? To understand the practice of remixing,
we count the total numbers of insertion, deletion, and re-
place operations performed on the constituent elements of the
remixed Scratch projects: Sprites, Costume, Sound, Variables
(Global/Local), and Blocks. In addition, we capture the script
rearrangements, that is, when programmers reposition an exist-
ing script within the Scratch workspace, and block categories
that are most frequently altered.

RQ1.2: Does the code quality change between the original
projects and their remixes? To assess the change in code
quality for metrics discussed in Section II, we conduct a
paired t-test (two-tailed) of the remixes. We formulate the null
hypothesis that there is no difference in code quality between
the original projects and their remixes. If the null hypothesis
is rejected, we conduct lower-tailed t-tests to identify the
increase/decrease in code quality.

RQ1.3: What is the trend in the code quality of remixes once
their original project is shared? To provide insights into the
programming practices of remixing over time, we analyze the
time-series of code quality in remixes with low modification.

B. Impact of Code Quality on Remixing (RQ2)

RQ2.1: Are poor code quality projects more likely to have
remixes with smaller-sized modifications? We investigate the
code quality of remixed projects for three categories of remixes
based on the modification percentages: None (0%), Low
modification (0-50%) and High modification (50-100%).

RQ2.2: Does code quality affect the time it takes to modify
a project in its remixes? Similar to RQ2.1, we examine three
categories of remixes based on the time taken to modify: none
(∼0 min), low (0 min - 3.6 days) and high (3.6 - 66.8 days).
These ranges were chosen based on the minimum, mean, and
maximum values of modification time.

To calculate the code quality of Scratch projects, we adapt
the code quality metrics, discussed in Section II. To compute
Halstead’s volume, we consider operands to be variable blocks
or shadow (default value) blocks, and operators to be all
blocks other than variable blocks. For ABC, we count the set
and change blocks as assignments, the procedure calls and
broadcast-receive blocks as branches; and the if-else blocks
or blocks containing the operator blocks as conditionals. We
apply the scalar value of the ABC metric to express code

Statistic Min Max Mean

Original Projects
Number of remixes 1 696 85
Program size (# blocks) 13 12632 498.83
Cyclomatic Complexity 2 38 4.888
Program Volume 39.069 3778.843 560.477
ABC 0 10983.706 247.787
Remixes
Program size (# blocks) 3 9616 516.898
Cyclomatic Complexity 2 38 4.539
Program Volume 49.05 4424.014 804.881
ABC Metric 2 10983.706 320.679
Modification percent 0 890.458 4.88

TABLE I
SUMMARY STATISTICS OF 8,142 PROJECTS

quality. The higher is the ABC value, the lower is the code
quality. Additionally, we compute the following two code
quality metrics based on the detected code smells: Long Script
Density, the ratio of long scripts (>11 blocks, as per previous
finding [5]) to the total number of scripts, and Duplicate
Groups, the total number of duplicate groups within a project.

C. Learning from Original Projects (RQ3)

The Scratch community fosters a comfortable environment
for novice programmers to learn from each other. Thus, it is
likely that existing Scratch projects do influence the program-
ming practices of beginner programmers. To understand how
original projects impact their remixes, we conduct an analysis
with the goal of answering the following questions:

RQ3.1: Do the project’s sprite cloning constructs impact
the number of duplicate sprites in its remixes? We examine
whether the number of “When I start as a clone” block in
an original project is associated with the number of duplicate
sprites in its remixes.

RQ3.2: Does the presence of procedures in the original
project motivate their increased use in its remixes? We study
projects containing custom blocks and examine whether new
custom blocks are added to their remixes.

IV. RESULTS

Table I presents an overview of the projects in our dataset.
Out of the initial dataset of 8,142 remixes, 2,758 were left
completely unmodified from the original projects, and 371
contained only addition or deletion of sprites without any
modification to the remaining sprites’ code in original projects.
The project sizes of the studied remixes ranged from 3
blocks to 9,616 blocks. We partition these projects into three
categories based on size, with 7,920 projects in the small
category (between 3 and 3,207 blocks), a size range that seems
comfortable for programmers to remix, 151 projects in the
medium category (3,207-6,412 blocks), and 71 projects in
the large category (6,412-9,616 blocks), suggesting that large
projects are hard to understand and modify. We present and
discuss the answers to each research question next.

A. General remixing trends (RQ1)

RQ1.1: Table II indicates that sprites are more modified and
deleted than added anew in the remixes. However, based on the
sprites present in both the original projects and their remixes

(i.e., disregarding the deleted and newly inserted sprites), we
find that programmers more frequently insert blocks than
delete them. Out of 8,142 projects, only 124 remixes either
added or deleted variables. Surprisingly, the majority of the
added variables are local, indicating an awareness of the
scoping issues and preventing the introduction of the Broad
Variable Scope smell, identified previously in [5].

Scratch Elements Insertion Deletion Alteration

Sprite 0.253 0.484 1.365
Blocks 8.305 7.409 6.56

Costume 0.411 0.978 -
Sound 0 0 -

Global variable 0.003 0 -
Local variable 0.167 0.004 -

TABLE II
AVG. MODIFICATIONS IN 5,384 REMIXES (EXCLUDING UNMODIFIED REMIXES)

The remixes alter the block types in the original projects
with the following distribution: Control (30.9%), Looks
(25.2%), Event (14.5%), Data (14.1%), Motion (10.1%),
Sound (4.1%) and Others (1.1%). We observe that program-
mers often alter control blocks in the remixes. In addition, we
observe that around 35% of the altered blocks change some
sprite attributes (i.e., Motion and Looks blocks) and add sound
related functionality, thus warranting a comprehensive palette
of animation and media blocks. In 36 projects, scripts are
rearranged without modifications. The “Clean Up” has been
applied only to 3 of these shared projects, thus implying that
programmers may not care about how blocks are arranged in
the project workspace.

RQ1.2: Based on the paired t-test (two-tailed) from Table
III, we reject the null hypothesis of no difference in the three
code quality metrics between the original projects and their
remixes (p < 0.05). On conducting the lower-tailed t-tests for
the three code quality metrics, we observe a decrease in all of
the code quality metrics (p < 0.05) in remixes. This change
is explained by the prevalence of deleting sprites as a part
of remixing, thus lowering program complexity. The observed
high number of unmodified remixes motivates the need for
warning programmers about sharing duplicated projects, thus
encouraging originality and creativity.

ABC Metric Prog. Difficulty Complexity

t Stat 3.742 9.654 5.522
P (T≤t) one-tail 9.193x10−5 3.013x10−22 1.718x10−8

t Critical one-tail 1.645 1.645 1.645
P (T≤t) two-tail 1.838x10−4 6.026x10−22 3.438x10−8

t Critical two-tail 1.960 1.960 1.960

TABLE III
PAIRED T-TEST OF CODE QUALITY BETWEEN ORIGINAL AND ITS REMIXES

RQ1.3: We find that most remixes maintain the code quality
levels of the original projects over time. In addition, for about
a third of the original projects (31.88%), the code complexity
of their remixes gradually increases and then plateaus out, as
illustrated in Figure 1 with three such representative projects.
One explanation is that the complexity of the original projects
keeps increasing over time as they evolve, a trend reflected

Jan 20
2019

Feb 3 Feb 17 Mar 3 Mar 17
Time

277959067

278707789

279580169

Project

300

250

200

150

A
B

C
 M

et
ri

c
o

f
R

em
ix

es

100

Fig. 1. A gradual increase of ABC in three sample projects

Modification Size

Metrics None (∼0%) Low (0-50%) High (50-100%)

Code Quality
Program Size 551.295 520.679 256.855
ABC 206.434 182.548 98.614
Program Volume 779.544 729.561 466.666
CC 4.251 3.765 3.764
Code Smell
Long Script Density 0.204 0.203 0.169
Duplicate Groups 12.909 12.197 5.547

TABLE IV
COMPARING AVERAGE CODE QUALITY BASED ON MODIFICATION %

in their remixes. These findings are consistent with the es-
tablished body of knowledge in software maintenance and
evolution, as codified by the “Increasing Complexity” law
of Software Evolution [19]: software complexity increases
unless a concerted effort is put to maintain or reduce it. It
is interesting to see this law manifesting itself in block-based
software as well.

B. Impact of Code Quality on Remixing Modifications (RQ2)

RQ2.1: From Figure 2, we observe that the program size
and the ABC are lower for bigger modification percentages
and higher for unmodified projects. This trend continues for
other quality metrics, as per Table IV. The ANOVA test reveals
that these groups differ significantly in each of the cases (p
< 0.05). This finding implies that high quality projects (i.e.,
projects with low metric values) are modified to a greater
degree in their remixes. Or conversely, the remixes of lower
quality projects tend to be modified to a lesser extent.

RQ2.2: From Figure 2, we observe that the program volume
values are higher when the programmers have taken either
no time or too long to modify. We observe this trend for
other quality metrics as well, as described in Table V, except
for CC. Based on the ANOVA test of these groups, we
validate that they differ significantly in each of the cases
(p < 0.05). This finding implies that programmers are more
comfortable working with high quality projects. Or conversely,
when remixing lower quality projects, programmers tend to
take longer or avoid making changes altogether.

C. Learning from Original Projects (RQ3)

RQ3.1: In 5,187 remixes (modified > 0% in small cate-
gory), we find that 75 remixes introduce duplicate sprites. Out
of them, the original projects of 52 (69.3%) remixes contain

Fig. 2. Impact of code quality on remixing and time taken to remix

Modification Time

Metrics None(∼0
min)

Short(0 min
– 3.6 days)

Long(3.6 –
66.8 days)

Code Quality
Program Size 583.806 495.239 523.242
ABC 200.934 173.932 186.339
Program Volume 760.964 706.015 752.394
CC 3.681 3.748 3.886
Code Smell
Long Script Dens. 0.204 0.202 0.211
Duplicate Groups 13.861 11.769 12.982

TABLE V
COMPARING AVERAGE CODE QUALITY BASED ON MODIFICATION TIME

“When I start as a clone” block. Surprisingly, the presence of
this block in a project seems to have no impact on preventing
duplicate sprites in the project’s remixes. Perhaps program-
mers find it hard to understand the concept of cloneable sprites
or find it impossible to avoid duplicating sprites.

RQ3.2: From 5,187 remixes, 2,529 are derived from the
original projects that contain procedures. Out of the 2,529
remixes, 36 projects (1.4%) add new procedures as part of
their modifications of the original projects. Whereas, out
of the remaining 2,658 remixes derived from the original
projects with no procedures, only 7 (0.2%) of them add new
procedures. This finding indicates that to organize code as
procedures, programmers tend to follow the procedure usage
trends established in an original project in its remixes.

V. CONCLUSIONS

We have conducted an empirical study of 8,142 remixes to
understand and improve the remixing culture in Scratch. We
explored the remixing behavior in terms of its general remixing
trends, the impacts of code quality on the nature of remixes,
and the influence of a project’s programming practices on that
in its remixes. A project’s code quality and coding practices
do affect how programmers modify code in its remixes. Our
findings can be applied to encourage and expand remixing, as
a highly effective communal learning technique that can also
be better supported by programming environments.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous review-
ers for their valuable feedback that helped improve this
manuscript. This research is supported by the National Science
Foundation through the Grant DUE-1712131.

REFERENCES

[1] S. Dasgupta, W. Hale, A. Monroy-Hernndez, and B. M. Hill, “Remixing
as a pathway to computational thinking,” Proceedings of the 19th
ACM Conference on Computer-Supported Cooperative Work & Social
Computing - CSCW 16, 2016.

[2] F. Hermans and E. Aivaloglou, “Do code smells hamper novice program-
ming? a controlled experiment on scratch programs,” 2016 IEEE 24th
International Conference on Program Comprehension (ICPC), 2016.

[3] B. M. Hill and A. Monroy-Hernández, “The cost of collaboration
for code and art,” Proceedings of the 2013 conference on Computer
supported cooperative work - CSCW 13, 2013.

[4] ——, “The remixing dilemma: The trade-off between generativity and
originality,” CoRR, vol. abs/1507.01295, 2015. [Online]. Available:
http://arxiv.org/abs/1507.01295

[5] P. Techapalokul and E. Tilevich, “Understanding recurring quality prob-
lems and their impact on code sharing in block-based software,” 2017
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2017.

[6] O. Meerbaum-Salant, M. Armoni, and M. M. Ben-Ari, “Learning
computer science concepts with scratch,” Computer Science Education,
vol. 23, no. 3, pp. 239–264, 2013.

[7] E. Aivaloglou and F. Hermans, “How kids code and how we know: An
exploratory study on the scratch repository,” in Proceedings of the 2016
ACM Conference on International Computing Education Research, ser.
ICER ’16. New York, NY, USA: ACM, 2016, pp. 53–61. [Online].
Available: http://doi.acm.org/10.1145/2960310.2960325

[8] J.-C. Lin and K.-C. Wu, “A model for measuring software understand-
ability,” in The Sixth IEEE International Conference on Computer and
Information Technology (CIT’06), Sep. 2006, pp. 192–192.

[9] ——, “Evaluation of software understandability based on fuzzy matrix,”
in 2008 IEEE International Conference on Fuzzy Systems (IEEE World
Congress on Computational Intelligence), June 2008, pp. 887–892.

[10] M. H. Halstead, Elements of Software Science (Operating and Program-
ming Systems Series). New York, NY, USA: Elsevier Science Inc.,
1977.

[11] D. Alawad, M. Panta, and M. F. Zibran, “An empirical study of the
relationships between code readability and software complexity,” 2018.

[12] D. Posnett, A. Hindle, and P. Devanbu, “A simpler model of
software readability,” in Proceedings of the 8th Working Conference
on Mining Software Repositories, ser. MSR ’11. New York,
NY, USA: ACM, 2011, pp. 73–82. [Online]. Available: http:
//doi.acm.org/10.1145/1985441.1985454

[13] T. J. McCabe, “A complexity measure,” IEEE Trans. Softw.
Eng., vol. 2, no. 4, pp. 308–320, Jul. 1976. [Online]. Available:
https://doi.org/10.1109/TSE.1976.233837

[14] N. Kasto and J. Whalley, “Measuring the difficulty of code
comprehension tasks using software metrics,” in Proceedings of the
Fifteenth Australasian Computing Education Conference - Volume
136, ser. ACE ’13. Darlinghurst, Australia, Australia: Australian
Computer Society, Inc., 2013, pp. 59–65. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2667199.2667206

[15] R. P. L. Buse and W. R. Weimer, “Learning a metric for code read-
ability,” IEEE Transactions on Software Engineering, vol. 36, no. 4, pp.
546–558, July 2010.

[16] M. A. Kuznetsov and V. O. Surkov, “Analysis of complexity
metrics of a software code for obfuscating transformations of an
executable code,” IOP Conference Series: Materials Science and
Engineering, vol. 155, p. 012008, nov 2016. [Online]. Available:
https://doi.org/10.1088/1757-899X/155/1/012008

[17] T. C. Hoad and J. Zobel, “Methods for identifying versioned and
plagiarized documents,” Journal of the American Society for Information
Science and Technology, vol. 54, no. 3, pp. 203–215, 2003. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.10170

[18] Y. Dong, S. Marwan, V. Catete, T. Price, and T. Barnes, “Defining tin-
kering behavior in open-ended block-based programming assignments,”
Proceedings of the 50th ACM Technical Symposium on Computer
Science Education - SIGCSE 19, 2019.

[19] M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, Sep. 1980.

