
Reusing in the Small: Promoting Procedural
Abstraction in Scratch Communal Learning

Peeratham Techapalokul and Eli Tilevich
Software Innovations Lab

Dept. of Computer Science, Virginia Tech
{tpeera4, tilevich}@cs.vt.edu

Abstract—One of the most important concepts for budding
programmers to master is procedural abstraction. Defined as
placing coherent, possibly reusable, functionalities within their
own encapsulated program units (e.g., procedures, functions,
methods, custom blocks), this concept requires a tangible increase
in programming proficiency to master. First and foremost,
procedural abstraction is a means of conquering complexity—
the ability to convincingly divide the program functionality
into distinct coherent parts that are easy to understand and
use. In addition, as invocable units of functionality, procedures
provide ready-made components that encapsulate the hidden
details of their implementation. One of the biggest advantages of
Scratch is its seamless support for communal learning, realized
as the ability to share and remix projects with ease. However,
programmers remix Scratch projects in their entirety, carrying
out the corresponding reuse and extension activities at the project
level of granularity. In this position paper, we argue in favor of
extending Scratch with the ability to reuse individual procedures,
implemented as custom blocks. This ability has the great potential
benefit of instilling the value of procedural abstraction in the
minds of beginner programmers. We discuss how a reuse facility
for custom blocks can be added to Scratch by identifying the
corresponding design objectives, challenges, and opportunities.

Index Terms—block-based programming, procedural abstrac-
tion, reusability, code quality, Scratch, introductory computing

I. INTRODUCTION

One of the most exciting features of major educational
block-based programming platforms is their natural support
for communal learning, typically referred to as remixing and
implemented in both Scratch [1] and MIT App Inventor [2],
among others. With remixing, a programmer derives a new
project by using an existing project as the starting point. In
Scratch, for example, one can remix someone else’s project
with a single mouse click. The environment’s remixing system
attributes remixes back to their original projects and tracks the
total number of remixes.

Remixing has been shown to serve as an effective pathway
for novice programmers to learn new programming concepts
and constructs [3]. In a way, sharing and remixing projects
creates a communal learning environment for the members
of community to learn from each other. By motivating pro-
grammers to create appealing and useful projects others would
want to remix, the Scratch remixing facility fosters social
engagement. Finally, remixing bears similarity to forking, a
fundamental process in open-source software development,

thus preparing beginner programmers for the prevailing pro-
gramming practices of the wider software development world.

However, remixing projects is not the only approach to
software reuse. Oftentimes, programmers incorporate small
and modular code components (e.g., procedures), with clearly
described functionality, into their projects. This reusable code
snippets may come from their own projects or those created
and shared by others. Procedural abstraction is an important
programming concept, natively supported by major block-
based programming languages. If given the ability to reuse
procedures, programmers would not only receive a valuable
development aid, but also would be conditioned to embrace
procedural abstraction as a way to promote modular decom-
position, encapsulation, and reuse. Nevertheless, major block-
based programming lack any facilities for sharing and reusing
existing procedures.

In this position paper, we motivate the need to add such
facilities and also argue that that the required engineering
effort would be quite manageable. Specifically, we give an
overview of the current support for code reuse in Scratch, the
potential benefits and educational opportunities that a code
reuse facility can bring, as well as the ideas and considerations
for implementing such a facility.

II. REUSING CODE IN SCRATCH

Scratch programmers are limited to only reusing the code
they have encountered previously as a result of interacting
with their own code or recollecting their exposure to relevant
functionality while browsing third-party projects. A program-
mer opens the project containing the sought-after functionality,
locates the relevant code, copies it into a clipboard-like storage
(e.g., “backpack” in Scratch), and finally pastes it into the
project that needs the code.

Reusing only what a programmer can recall is somewhat
limited given the vast codebase the Scratch community has
at its disposal. Furthermore, based on our observations, we
discovered the Scratch community extending a workaround
effort that reflects the need to share and reuse code. Specifi-
cally, some Scratch programmers create special projects that
contain only custom blocks; such projects typically follow the
naming convention of “* custom block shop,” with a concrete
example shown in Figure 1. Some Scratch programmers even
commit to curating their custom block projects by performing

Fig. 1. A custom block shop project

community-building activities that include accepting third-
party contributions and opening their curated custom block
collections for others to reuse.

One facility that can be very helpful in reusing code is the
ability to search code by name, a feature absent from major
block-based programming environments, despite their large
communal codebases. For Scratch, one can add a minimal but
very helpful facility for indexing and searching for procedures.
Currently, only Scratch projects are searchable by name.

III. POTENTIAL BENEFITS OF SUPPORTING CODE REUSE

Enhancing programming environments for blocks with the
ability to share and reuse code would provide various produc-
tivity and educational benefits, as we discuss next.

Improving Productivity and Creativity Systematic sup-
port for reusing code (e.g., in a form of a function library)
can greatly increase programmer productivity. Without a rich
ecosystem of libraries and frameworks, building any non-
trivial software project would become a massive undertaking
for the average programmer. The ability to reuse code sys-
tematically via libraries and frameworks provides reliable and
useful building blocks, whose underlying implementation de-
tails remain hidden. On the other hand, Scratch programmers
are left to their own devices to dissect the code they may
want to use. Lack of modularity and high complexity can
quickly make this code foraging task beyond reach for novice
programmers. The required difficult trial-and-error process can
not only decrease programmer productivity, but also cause
them to become less creative. While tinkering to reuse existing
code can be a valuable educational experience in many cases,
a facility for reusing common and well-defined functionalities
can help programmers stay in their creative flow. From a
pedagogical standpoint, code reuse facilities would provide an
authentic learning experience that familiarizes students with a
fundamental, real-world software development practice.

Serving as Programming Examples Once pedagogical
concern is that when novice programmers can search and reuse
code with ease, they may miss out on some educational bene-
fits, such as understanding third-party code and learning in the
process. This fear of unintended consequences is unwarranted,
as programmers reuse ready-made programming solutions as
a regular practice. If a found solution accomplishes the task
at hand, then programmers feel compelled to learn how that
solution works. We believe that the ability to search for

existing solutions in Scratch will afford similar benefits to this
programming community. Small and modular code snippets
would serve as programming examples, a valuable educational
asset for novice programmers. Both remixing [3] and code
reuse [4] have been observed as influencing beginner program-
mers to use increasingly more programming constructs.

Promoting Code Quality Building on the success of
remixing, code reuse can make a positive impact on the
educational effectiveness of Scratch as a learning environment
for introductory computing. For one, by using this facility,
programmers would end up improving the code quality of
their projects (i.e., non-functional quality). In other words,
systematic code reuse can remove some of this domain’s most
prevalent recurring quality problems (e.g., Code Duplication,
Long Script, etc.), as identified previously [5].

The block-based programming community can promote
procedural abstraction as a way to encourage those program-
mers with sufficient programming proficiency to start thinking
about their code quality. Besides procedural abstraction and
parameterization, we expect programmers to develop various
programming competencies, which arise from the need to
share useful code (i.e., identifying reusable code) and write
code that can be found and reused by others (i.e., coming up
with a descriptive name).

A code reuse facility can increase the overall project’s
modularity, an important factor influencing whether a project
is conducive to remixing. Prior studies have identified the
low usage of the procedural abstraction in block-based pro-
gramming [6], [7], despite the concept being quite important
to both introductory CS and disciplined software engineering
practices. A lack of modular decomposition may negatively
affect the communal learning value of a Scratch project by
making it hard for others to understand, reuse, and modify.
Indeed, as pointed out by the designer of the Scratch remixing
system, a project’s modularity is one of many factors that
increase the chance of a project being remixed by others [1].

IV. CODE REUSE FACILITIES FOR SCRATCH

We discuss some of the main technical implications of
adding a code reuse facility to Scratch and other programming
environments for blocks. Figure 2 outlines the user interface
of a code reuse facility. This mock user interface shows how
the key functionalities—share and search & reuse—can be
exposed to the programmer.

Sharing Custom Blocks Certain Scratch design choices
hinder writing self-contained reusable code. For example, in
the absence of local variables, to reuse the code of some
custom blocks would require introducing new sprites or global
variables. Additionally, with custom blocks lacking return
values, a separate external variable needs to be introduced
to access the result computed by a custom block. Perhaps
it is because of these language design choices that some
Scratch projects contain explanatory comments that explain
the intended application of the aforementioned workarounds.
Nevertheless, a dedicated facility for reusing code is expected
to encourage programmers to expend additional efforts making

Share a Custom Block

Preview
functionality

Preview
code

Search & Reuse a Custom Block

Add to
Backpack

Code Search Tool

Use in a project

Share this
custom block

Fig. 2. Basic code reuse facilities to support programmers to share and reuse
custom blocks

their code easier to understand and reuse (e.g., describing what
a custom block does and how others can use it).

Before programmers can be encouraged and supported to
share custom blocks, they would first need to start using
custom blocks in their code. Given that this language feature is
underused in the codebase of block-based languages [6], there
is great potential benefit in lowering the programming burden
of extracting reusable custom blocks from extant projects.
Hence, automated refactoring in this domain can serve yet
another valuable purpose [8].

Reusing Custom Blocks It would not be hard to enhance
Scratch with a facility for reusing custom blocks, as the
language already provides basic bookkeeping of variables,
automatically creating non-existing variables used in the copy-
and-paste code. Furthermore, the insights and findings of the
prior state of the art in the code reuse practices of novice
programmers (e.g., Looking Glass [9]) would inform the user
interface design for a Scratch facility for reusing code. A
code search facility can be integrated with automated program
analyses to be able to meaningfully rank search results. The
ranking could take into account various ease-of-reuse char-
acteristics of the shared custom blocks when searching them
based on their name and description.

Finally, to motivate code reuse, the proposed facilities
would have to incorporate the open-source culture of the
remixing practice. To that end, the ability to track the usage
of shared custom blocks would increase their visibility, while
also helping programmers identify when custom blocks are
worth reusing. The authors of shared custom blocks should

be properly attributed to receive a due credit for their work
being used by others. For example, to add a third-party
custom block in a project, a code reuse facility can add an
automatically generated code comment, associated with the
block’s definition script, ID, author, and description. This
author credit information can also be extracted and included
as part of the project description.

V. CONCLUSION

The success of Scratch in fostering the open-source culture,
in which programmers share and remix projects, is quite un-
precedented for novices and end-user programmers. Indeed, as
the Scratch community continues to grow, it currently amasses
almost 42 million users and 43 million shared projects1, Code
reuse facilities could become a valuable addition to the remix-
ing facility, fulfilling the common programming need to reuse
existing code. Custom blocks—a basic programming construct
for procedural abstraction in Scratch—presents a viable oppor-
tunity to reuse code at smaller levels of granularity. Code reuse
facilities could provide various development and educational
benefits that range from improving programmer productivity
to promoting code quality, a subject of future controlled user
studies that would drive further design iterations.

ACKNOWLEDGMENT

This research is supported in part by the National Science
Foundation through the Grant DUE-1712131.

REFERENCES

[1] A. Monroy-Hernandez, “Designing for remixing: Supporting an online
community of amateur creators,” Ph.D. dissertation, Massachusetts Insti-
tute of Technology, 2012.

[2] S. C. Pokress and J. J. D. Veiga, “MIT App Inventor: Enabling personal
mobile computing,” arXiv preprint arXiv:1310.2830, 2013.

[3] S. Dasgupta, W. Hale, A. Monroy-Hernández, and B. M. Hill, “Remixing
as a pathway to computational thinking,” in Proceedings of the 19th
ACM Conference on Computer-Supported Cooperative Work & Social
Computing, ser. CSCW ’16. New York, NY, USA: ACM, 2016,
pp. 1438–1449. [Online]. Available: http://doi.acm.org/10.1145/2818048.
2819984

[4] P. Gross and C. Kelleher, “The Looking Glass IDE for learning computer
programming through storytelling and history exploration: conference
workshop,” Journal of Computing Sciences in Colleges, vol. 26, no. 1,
pp. 75–76, 2010.

[5] P. Techapalokul and E. Tilevich, “Understanding recurring quality prob-
lems and their impact on code sharing in block-based software,” in
Proceedings of IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC, 2017.

[6] E. Aivaloglou and F. Hermans, “How kids code and how we know:
An exploratory study on the Scratch repository,” in Proceedings of the
2016 ACM Conference on International Computing Education Research.
ACM, 2016, pp. 53–61.

[7] I. Li, F. Turbak, and E. Mustafaraj, “Calls of the wild: Exploring
procedural abstraction in App Inventor,” in 2017 IEEE Blocks and Beyond
Workshop (B&B), Oct 2017, pp. 79–86.

[8] P. Techapalokul and E. Tilevich, “Code quality improvement for all:
Automated refactoring for Scratch,” in 2019 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), Oct 2019.

[9] P. A. Gross, M. S. Herstand, J. W. Hodges, and C. L. Kelleher, “A
code reuse interface for non-programmer middle school students,” in
Proceedings of the 15th international conference on Intelligent user
interfaces. ACM, 2010, pp. 219–228.

1https://scratch.mit.edu/statistics/

