Manual Refactoring (by Novice Programmers)
Considered Harmful

Peeratham Techapalokul and Eli Tilevich
Software Innovations Lab
Dept. of Computer Science, Virginia Tech
{tpeerad, tilevich} @cs.vt.edu

Abstract—In recent years, the issue of quality in introductory
and end-user programming has become increasingly prominent.
In particular, the poor quality of block-based programs has been
shown to harm the educational effectiveness in this programming
domain. As a result, there has been a growing interest in code
quality and its improvement practices among researchers and
educators. Refactoring—transforming code to remove quality
problems while preserving semantics—is taught as a common
and practical technique for improving code quality. To maximize
pedagogical effectiveness, some educators advocate teaching stu-
dents to refactor by hand to elucidate the mechanics behind
refactoring instead of relying on tools that transform code auto-
matically. In this position paper, we argue that this pedagogical
approach is counterproductive. We advocate teaching refactoring
similarly to compilation, a technique that students start applying
automatically right away, but learn its inner workings only much
later in the curriculum. Even professional developers are advised
to avoid carrying out complex refactoring transformations by
hand, as this activity leads to hard-to-trace bugs as well as wastes
time and effort. To put appropriate tools for improving software
quality into the hands of Scratch programmers, we created an
automated refactoring infrastructure for Scratch, and we argue
that such facility should become a mainstay of programming
environments for blocks.

Index Terms—block-based programming, refactoring, code
quality, introductory computing, Scratch

INTRODUCTION

Software quality is important, but requires a concerted
effort to sustain. Software refactoring is a common practice
for improving the quality of existing code while keeping
its functionality intact. That is, refactoring is a semantics-
preserving program transformation [1]. For example, applying
RENAME refactoring to function foo to change its name to
printCustomer makes the program easier to understand by
providing a descriptive name for this function, but it does
not change what the program does. Although programmers
can apply a refactoring by transforming the source code
by hand, in modern software development, refactorings are
executed by means of automated program transformation tools,
operated under the programmer’s direction. The difficult aspect
of refactoring is ensuring its semantics-preserving nature.
To that end, automated refactoring tools integrate powerful
program analysis modules that determine and check a set of

This research is supported in part by the National Science Foundation
through the Grant DUE-1712131

e i)

point in direction pick random o to @

clear graphic effects

setxto o

‘

set color » effectto x position

if on edge, bounce

move @ steps

point in direction pick

if on edge, bounce

define Change Color = pos

o - @

set color v effectto pos

Change Color x position

move @ steps

Fig. 1. Introducing a bug via manual refactoring.

preconditions before carrying out any refactorings. Checking
refactoring preconditions by hand can be non-trivial, requiring
careful attention to detail. Refactoring by hand can introduce
unexpected semantic changes or hard-to-trace bugs.

The example program in Figure 1 is a simple animation of
a character bouncing around and, when in the stage’s right
side, changing its color in such a way that the color’s value
corresponds to that of the character’s x coordinate. Consider
a novice programmer deciding to extract the color changing
code into a separate procedure by carrying out the Extract
Procedure refactoring by hand. The refactored code shows the
procedure’s parameter pos replaces each x position block in
the procedure’s body. The inadvertently introduced bug in the
refactored code causes the character to stop changing its color.
By contrast, an automated refactoring tool would reject this
refactoring attempt up front. It would detect that x position
is a non-constant expression block, while any introduced
parameter would remain unchanged across loop iterations due
to Scratch’s pass-by-value parameter passing semantics.

Refactoring is closely related to compilation. Both processes
transform programs: refactoring transformations are within
the same language, while compiler transformations typically
convert programs in a higher-level language to a lower-
level one. Both transformations are semantics-preserving. If
introductory learners are introduced to computing by using a
compiled language, they are taught how to compile programs
as an intrinsic part of the curriculum. The instructor would
mention that compilation translates a program to executable
code, but without explicating the compilation process.

We argue that we should teach introductory students to
improve the code quality of their programs by applying auto-
mated refactoring tools. If convincing budding programmers
that code quality is important, automated refactoring tools
should become a standard part of their programming arsenal.
Novice programming environments should be able to highlight
code quality problems, removable via automated refactorings
put at the programmer’s fingertips. Similarly to how we teach
students to compile their code to create an executable version,
we should also teach them to apply such automated refactoring
tools to improve the code quality of their programs.

ARGUMENTS AGAINST MANUAL REFACTORING

For pedagogical reasons, some educators favor the idea
of making refactoring transformations more transparent by
teaching students how to refactor by hand first, before teaching
them how to use any automated refactoring tools. Although
many programming tasks lend themselves to such a bottom-up
teaching strategy, refactoring is not one of them. For example,
some IDEs can automatically generate much of boilerplate
code; however, before using such code generators, students
should learn how to write the generated code by hand. A
similar argument applies to using an IDE’s code completion
facilities. Nevertheless, there are several dangers associated
with learning refactoring in such a bottom-up way.

a) Performing tedious, error-prone transformations by
hand kills the joy of coding and creativity flow: When
designing for beginners, one must choose what black boxes
are (i.e., what should remain hidden from the user’s purview)
[2]. If the main goal is for novice programmers to learn and
engage their creativity with coding while picking up valuable
code quality improvement practices, we argue that automated
refactoring is the right black box for this educational design.
Prior research shows that professional software developers
refactor frequently [3]. With the low-level, error-prone, and
cognitively demanding task of manual refactoring, it is hard
to imagine that refactoring would become an integral part of
the programming process of budding programmers instead of
discouraging them from ever refactoring their code.

b) Manual refactoring goes against the bottom-up pro-
gramming style of beginners: Without the RENAME refactor-
ing, one can only imagine how cognitively taxing it would
be for novice programmers to consistently rename variables
scattered around numerous places in the code. This refactoring
is necessitated by the complexity for novice programmers to

be able to always come up with descriptive names for pro-
gram identifiers. If this refactoring is forgone, any non-trivial
codebase would quickly become incomprehensible. Another
unintended consequence is that students may be compelled to
think unnecessarily hard about this low-level implementation
consideration during the design phase, a behavior incongruent
with the bottom-up programming process that encourages
student programmers to freely experiment with their code.
Hence, automated refactoring is an important ingredient in
bringing programming with blocks closer to the style of the
iterative refinement process of modern programming practices.

¢) Manual refactoring discourages novices from forming
desirable programming habits: Novice programmers are yet
to develop an appreciation for sustaining and improving the
quality of their code. As they involuntarily engage in cost-
benefit analysis, they could quickly get discouraged and even
have negative experiences with the prescribed manual refac-
toring practices. Finally, if students persist with the practice
of performing refactoring manually, they risk developing un-
desirable programming habits when transferring their skills
to other software development activities. The complexity and
requirements of modern software development call for pow-
erful automated tools for improving software quality with
automated refactoring support being part and parcel of all
major IDEs. Modern development practices encourage the
adoption of automated tools, including refactoring to both
prevent errors and improve productivity.

AUTOMATED REFACTORING FOR BLOCKS

In our research, we have been enhancing Scratch with
automated refactoring. Our refactoring infrastructure, QIS (pro-
nounced as /chez/) [4], is designed for novice programmers,
providing on-the-fly contextualized coding hints that inform
programmers about code quality problems (presented as im-
provement opportunities). Programmers can then decide to
apply the suggested refactoring transformations associated
with the hints. The refactorings in QIS are highly applicable
to remove some of the highly recurring quality problems in
Scratch codebase [5]. Our preliminary findings are promising,
having shown to motivate Scratch novices to improve code
quality. Nevertheless, automated refactoring for block-based
programming remains at an early stage of integration, with
great potential for introductory and end-user programming
pursuits as well as exciting future research opportunities.

REFERENCES

[1] M. Fowler, Refactoring: improving the design of existing code. Addison-
Wesley Professional, 2018.

[2] M. Resnick and B. Silverman, “Some reflections on designing construc-
tion Kkits for kids,” in Proceedings of the 2005 Conference on Interaction
Design and Children, 2005.

[3] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE Transactions on Software Engineering, vol. 38, no. 1,
pp. 5-18, 2011.

[4] P. Techapalokul and E. Tilevich, “QIS: Automated refactoring for
Scratch,” in 2019 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), Oct 2019.

, “Code quality improvement for all: Automated refactoring for

Scratch,” in 2019 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC), Oct 2019.

(5]

