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Abstract—Block-based programming languages have become
increasingly prominent in both the educational and end-user
communities. As the block-based codebase is growing rapidly, its
quality remains poorly understood, even though the awareness of
recurring quality problems in this domain can benefit educators
and end-user programmers alike. To address this problem, we
report on the results of a large-scale assessment of recurring
quality problems in block-based software. Our work identifies
quality problems endemic of block-based software, as well as
applies program analysis to assess the prevalence and severity of
quality problems in close to 600K representative Scratch projects.
Our empirical evidence shows how certain recurring quality
problems hinder code sharing for popular Scratch projects.
These results indicate that the quality of block-based software
warrants the attention of CS educators, end-user programmers,
and tool builders. Our study’s results can help programmers
avoid introducing the quality problems, while guiding tools
builders in supporting the systematic quality improvement of
block-based software.

Index Terms—end-user programming; empirical study; soft-
ware quality; program analysis; code smells; block-based soft-
ware; Scratch; software refactoring

I. INTRODUCTION

The key functions of modern society critically depend on
software-based systems. Finance, transportation, communica-
tion, government, defense—all rely on software to manage and
carry out day-to-day operations. A key factor that determines
the utility and safety of any software-based system is software
quality. In this respect, poor software quality is known not
only to increase the development and maintenance costs,
but also be conducive to causing software defects [1], [2].
Block-based languages have become an important entryway
to the world of software development for CS learners and
end-user programmers alike. Although one may argue that
block-based programs are too simple to warrant any quality
concerns, the issue at hand is the formation of good habits that
promote solid software engineering practices, as block-based
programmers move forward in their computing journeys. In
any case, software quality is known to be inversely correlated
with the effort required to understand, modify, and evolve
a software system [3], [4]. In that light, improving software
quality is an important process, with the assessment of quality
problems being the critical first step in this process.
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In addition to the societal impact, poor software quality can
hinder learning enabled by code sharing, an important learning
activity for novice programmers. For example, Scratch, the
language we focus on here, has a large and engaging on-
line community, whose slogan is “Imagine, Program, Share.”
This slogan reflects a vision of sharing—called remixing in
Scratch—being a central tenet of this learning community [5].
Yet, the majority of Scratch projects we studied have had a
limited success in allowing others to extend them, rendering
these projects less “remixable.” As we have discovered, soft-
ware quality can be an important factor affecting whether a
project is remixable.

In this work, we document recurring quality problems in
block-based programs written in Scratch by leveraging the
well-recognized software quality assessment methodology of
code smells [6]. In essence, a code smell documents a recurring
pattern of design and/or implementation choices that indicate
the symptoms of software quality problems. We study how the
presence of code smells affects remixed projects in terms of
their “remixability.” In fact, some code smells that we studied
have shown statistically significant effects on how remixable
a project is. The intuition behind this insight is simple: for
a project to be inviting for other programmers to remix and
extend, it has to be easy to understand and modify, a property
hindered by the presence of some code smells.

To establish a practical benchmark for the thresholds at
which the presence of code smells starts hindering remix-
ing, our study focuses on popular remixed projects, whose
remixes have been substantially extended. We then use these
benchmark-based thresholds to determine the severity of the
discovered code smells in our subject dataset, which comprises
close to 600K projects.

The low-risk category of smell severity indicates the level
of quality at which a project is likely to be remixed and
extended. As our results show, some code smells with high
prevalence have a larger percentage of projects in the very high
risk category compared to the benchmark projects. Conversely,
successful remixed projects exemplify how high software
quality can help uphold the fundamental sharing principle of
the learning community of novice programmers.



The goal of our study is to answer the following research
questions:

e RQI: What known code smells described in the literature

are applicable in the context of Scratch?
Motivation: The incidence of code smells is commonly
influenced by certain programming language features.
Although block-based languages share many similarities,
they tend to differ with respect to their feature-sets. As
a result, recurring quality problems afflict programs in
these languages in dissimilar ways. This work contributes
a catalog of code smells specific to Scratch, thus far
not thoroughly compiled and documented, benefiting all
the stakeholders in Scratch and giving insights to the
stakeholders in other block-based languages.

e RQ2: What can the analysis of popular Scratch projects

teach us about the state of software quality in this
programming domain?
Motivation: Popular projects can strongly impact the
software development practices of novice programmers,
who commonly remix these projects, thus using them as
an active learning resource. Understanding the software
quality of popular projects can provide insights about how
quality affects code remixing and also make it possible
to derive practical software quality benchmarks.

e RQ3: How prevalent and severe are different code smells

in the general Scratch code base?
Motivation: Knowing how prevalent each type of code
smell is in a large population of Scratch programs can
provide helpful hints for the tool builders, whose aim is to
enable block-based developers to improve the quality of
their projects. When providing refactoring tools support,
one should pay special attention to the code smells with
high prevalence and severity.

This paper makes the following contributions:

1) A catalog of code smells for Scratch We present
a catalog of code smells for Scratch, drawn from the
research literature on recurring software quality problems.

2) An assessment of how the presence and density of
code smells affect the likelihood of a popular Scratch
project being remixed and extended We propose the
Script Addition metric as a simple heuristic to identify
Scratch projects that are likely to exhibit high comprehen-
sibility and extensibility. We statistically evaluate whether
the proposed metric can be relied on to predict the rate
of incidence of code smells.

3) A large-scale assessment of the prevalence and severity
of code smells in Scratch projects We present our
findings on the prevalence and severity of code smells
in a large dataset of close to 600K Scratch projects by
using the percentile-based risk thresholds derived from
the subset of popular projects whose Script Addition
metric is ranked in the top 25%.

Paper Organization: The remainder of the paper is organized
as follows: Section II presents background information on the
Scratch language. Section III compares this work with the

related state of the art. Section IV presents our approach to
cataloging smells, and the identified catalog as well as explains
how we designed our quality assessment study. Section V
explains the results of our study. Section VI points out the
threats to validity of our results. Finally, Section VII presents
future work direction and concluding remarks.

II. BACKGROUND

This section gives an overview of block-based programming
languages and the characteristics of Scratch, the language we
focus on in this study.

A. Block-based programming languages

In recent years, block-based programming languages have
become increasingly important both in educational pursuits
and the computational empowerment of non-CS profession-
als. The appeal of block-based languages ranges from the
pedagogical effectiveness, with which they can introduce
computing concepts to introductory computing learners, to the
intuitiveness, with which they can represent complex domain-
specific computing environments for areas including robotics,
multimedia computation, and mobile computing.

B. Scratch

Scratch [7] allows programmers to apply computing con-
cepts to create a wide range of interactive and media rich
projects such as games, animation, and storytelling. The
Scratch language is specifically designed to support multi-
media computing (e.g., interactive stories, games, animations,
etc.).

Each Scratch project contains one stage object that acts
as the global scope for the whole project. The stage can
contain zero or more graphic objects called sprites. Both
the Stage and sprite objects can be programmed; they are
commonly referred to collectively as scriptables. A scriptable
comprises a collection of scripts as well as a set of multimedia
elements (i.e., graphics called costumes, and sounds) that
can be referenced by the scripts. Each script is a unit of
functionality composed of a series of connected blocks. Hence,
a block is a key Scratch construct.

Scratch is an event-based programming language. Each
script starts with a special block that is triggered by an event
and acts as an entry point of the script. Events comprise
user events (e.g.,“a mouse click”) and internal events that are
created by programmers using a broadcast/receive mechanism
used for inter-script communication. Variables can be declared
to be globally accessible or private to each sprite. Programmers
can create custom blocks which are similar to functions or
methods. However, custom blocks cannot be shared between
scriptables, and they cannot return values.

III. RELATED WORK

In this section, we describe the research work on code
smells in the context of end-user programming languages. The
research literature describing code smells mainly focuses on
object-oriented languages. Only recently, the research com-
munity has started to also include end-user programming



languages. The study of code smells in the context of end-
user software development has received growing attention,
with notable works studying Yahoo! Pipes web mashups[§]
and spreadsheet formulas [9]. Previous experimental results
encourage code smell research in the context of end-user
software development, suggesting that end-users are aware of
code smells and prefer smell-free software [10], [11], [9]

The growing popularity of block-based programming lan-
guages as a tool for educational and end-user programming
pursuits prompts the research community to take a closer
look at the software quality of block-based software. We next
describe closely related previous research efforts and explain
how our work differs:

a) ldentifying potential code smells in block-based
projects: We build upon the previous research efforts in
identifying code smells in block-based projects. Hermans et
al. [12] identify a catalog of 11 code smells in block-based
programs written in Kodu and Lego Mindstorms EV3. Our
work focuses on the code smells found in Scratch projects,
which thus far have not been comprehensively explored. We
specifically focus on Scratch due to its enormous success as
a tool for introductory computing education. We survey the
existing research literature, which serves as the basis of our
catalog of 12 Scratch code smells. We define the studied code
smells, develop an automated analysis tool, and apply the tool
to a large dataset of close to 600K Scratch projects to assess
the prevalence and severity of the code smells.

b) Understanding the effects of code smells: Hermans
and Aivaloglou [13] conducted a controlled experiment to
study how code smells impact novice Scratch programmers.
Their results reinforce a shared understanding among com-
puting educators that code smells indeed negatively affect the
programmers trying to understand and extend existing code.
We derive further empirical evidence of the negative effects
of code smells by showing how the high presence of code
smells in some popular projects reduces the likelihood of these
projects being remixed and extended.

c) Assessing the prevalence of code smells: Prior efforts
also focused on assessing the software quality of block-based
projects in general and Scratch in particular. Aivaloglou and
Hermans[14] analyzed a moderately large dataset of over
250,000 Scratch programs for three code smells: large scripts,
dead code, and duplicate block codes. Our work broadens the
scope of this prior work on Scratch by considering additional
code smells over a larger sample size of Scratch projects.
We additionally assess the severity of code smells based on
the percentile-based thresholds calculated from the dataset of
popular projects, ranked by means of our proposed Script
Addition heuristic in the top 25%.

IV. METHODOLOGY

A. Identifying code smells for Scratch

We derive our catalog of code smells for block-based
software by examining the research literature on this topic,
considering smells in different types of programming domains.

In particular, the code smells we consider in this work are
derived from the following categories:

e Classic code smells: These language independent code
smells have been identified and documented a long time
ago, as they universally occur in all types of software
domains. The smells in this category include Duplicated
Code and Long Script.

¢ Object-oriented code smells: Scratch supports a lim-
ited form of the object-oriented programming style with
scriptable objects. In a way, each scriptable embodies an
object with an encapsulated private state that can only
be modified in response to receiving external events. In
essence, scriptables can be seen as single-instance ob-
jects, whose interactions with each other are also subject
to the kinds of smells usually found in object-oriented
software. In fact, some of the smells in this category have
already been identified in the literature. For example, OO-
inspired block-based smells, such as Feature Envy and
Inappropriate Intimacy have been identified in reference
[12]. The smells in this category include Middle Man.

o End-user code smells: Some end-user code smells in
the literature [8] are also applicable to Scratch. The
smells in this category include Duplicated String and
Uncommunicative Name.
Block-based code smells: Some of the smells are unique
to block-based software. Although many of these smells
share similarities with ones in other categories, certain
aspects of Scratch design make these smells unique for
this domain. For example, the IDE support for naming
sprites is partly responsible for introducing one of these
smells, Uncommunicative Name [15]. The smells in this
category include No-op, Broad Variable Scope, and Un-
defined Block.

Designating a recurring software quality problem as a smell
is a subjective decision. Software domains are known to have
unique quality problems [16]. Informed by this insight, we
take a conservative approach to introducing new smells, rather
preferring to focus on the known smells, identified earlier in
each of the categories listed above. In other words, we deliber-
ately disregard potential code smells that are domain-specific,
instead focusing on the general smells that commonly occur in
Scratch programs. We also disregard those code smells that are
unavoidable, possibly due to the limitations of the language.
For example, Duplicated Code across scriptable objects is
not considered because scripts and custom blocks cannot be
shared among scriptables. Long Parameter is another example
deemed irrelevant, as Scratch provides no way to construct
data objects as object-oriented languages do to address this
problem.

B. Datasets

Scratch currently has over 17.3 million users and over 21
million projects shared!. We study Scratch because of its
popularity and the accessibility of a large set of projects

Uhttps://scratch.mit.edu/statistics/ (accessed March 2017)



that this educational / end-user programming community has
made publicly available. Our analysis relies on two datasets of
Scratch projects, which serve different purposes in our study
as described next.

a) A Large dataset of Scratch projects: The first dataset
consists of 1,066,308 shared Scratch projects randomly col-
lected during April-July 2016. This dataset will be used in the
assessment of the prevalence and severity of code smells in
Scratch programs in Section V-B. Out of these projects, we
were able to successfully parse and analyze 1,009,192 projects.
The disregarded projects were the ones that our parser and
analyzer could not handle.

Data exclusion: For the large dataset, the summary statistics
in Table I suggests the majority of projects are very small and
may not exhibit code smells that we are interested in. To yield
meaningful results, we consider projects of sufficient size (20
blocks or more) when assessing the prevalence of code smells.

Based on this criteria, we parsed and filtered the initial
project dataset, identifying 594,988 projects deemed as worthy
to be analyzed for the presence of smells. In effect, excluding
projects on this principle also disregards non-programming
projects that contain little interesting programming logic;
Dasgupta et al.[17] refer to projects like that as “coloring-
contests.”

b) Top popular Scratch projects: For the second dataset,
we consider 620 popular projects, hosted on the Scratch
website?, as the initial dataset. Out of this dataset, we select
the parse-able projects with at least 80 remixes, resulting in
519 projects used for the study. Our reasoning behind this
selection procedure is that for a project to get remixed, it has
to enjoy popularity.

Table II shows the basic summary statistics of this dataset.
As seen, popular projects have a high number of views, marked
as “favorite” and “loved” by others, with many remixes. These
projects come from a wide range of sizes, based on the number
of blocks used (comparable to the lines of code metric).

C. Computing code smell metrics

Next, we describe how the code smell metrics used in this
study are computed.

1) Automated smell analysis: We develop an automated
code smell analysis tool for Scratch. We leverage a widely
used parser generator, Java Compiler Compiler (JavaCC), that
takes a grammar as input and automatically generates a parser.
As input to JavaCC, we pass the grammar describing the
internal representation of Scratch programs. The resulting
parser reconstructs the abstract syntax tree (AST) objects from
the source code of Scratch projects, already structured using
an AST-like representation in the JSON format. We leverage
JastAdd [18], a Java-based system for compiler construction
that supports the development of analysis tools. Because of the
excellent tooling support for compiler-based projects in Java,
we used this language to write all our analysis routines.

Zhttps://scratch.mit.edu/explore/projects/all/popular (as of March 2017)

2) Calculating code smells metrics: There are three pos-
sible options for calculating code smells metrics: (1) density
per 100 blocks, (2) percentage of smell instance relative to
program elements of interest, and (3) instance counts. We
make use of all these options, depending on the code smell
under study. For example, we use density to adjust for the
project size in certain code smells whose incidence tends
to increase with the size of the source code. For instance,
Duplicated Code with the density of 3 means an average of 3
Duplicated Code instances per hundred blocks in the project.
We use percentage for those code smells whose incidence
tends to grow proportionately to the number of the program
elements that can be afflicted by the smell. For example, Long
Script with 25% means that, on average, 1 out of 4 scripts in
the project suffers from the smell. For other code smells with
a rare incidence rate expected, we use smell instance counts.
We occasionally refer to the three types of smell metrics
collectively in the rest of the paper as code smell incidence
rate. Section V-A defines the studied code smells as well as
the options used for calculating them.

3) Code smell analysis parameters: Certain code smells
require specifying parameters. Changing these parameter will
lead to different results, thus affecting the reproducibility of
this work. Although the analysis routines for the majority
of analyzed smells require no parameterization, the routines
that search for the presence of DC, DS, LS, and I can be
parameterized with different sensitivity levels.

For DC, our analysis implementation is based on [19]. The
analysis disregards duplicated code segments if they happen to
be parts of larger duplicated segments. Our assumption is that
the size of a duplicated segment is directly proportional to how
harmful the impact of this smell is. Hence, smaller duplicated
segments within the larger duplicated segments can be safely
ignored without compromising the accuracy of the insights
derived from our analysis. This consideration is referred to in
the clone detection literature as “clone quality” [19].

Specifically, we consider subtree clones that include nested
blocks (e.g., the while-1loop statement, etc.) and fragment
clones (i.e., varying sequences of simple blocks and subtrees),
whose minimum size is 8 AST nodes. The analysis considers
sequences of up to 10 blocks, which can comprise both simple
blocks and subtrees.

For other code smells, we mitigate such subjectivity in
choosing the thresholds by relying on a data-driven approach.
The two passes of the analysis are required with the first pass
extracting the necessary software metrics in the large dataset to
determine the appropriate threshold values (e.g., string length
and script length across all projects in the large analysis
dataset in the case of DS and LS, respectively). We obtain the
threshold values similarly to the approach introduced by Lanza
and Marinescu [20]. Specifically, we consider the threshold
values at the 70" percentile as extreme. Table III presents the
thresholds derived from the large analysis dataset.

3Please, refer to Section V-A for the explanation of smell abbreviations.



Statistic N Mean St. Dev. Min  Pctl(25) Median  Pctl(75) Max
numBlock 1009192  140.95 571.88 0 9.44 27.93 75.7 25255
numProc 1009192 0.87 7.09 0 0 0 0 947
numScript 1009192 16.76 60.11 0 1.29 3.97 11.06 8020
numSprite 1009192 59 9.78 1 1.75 2.95 5.52 595
numVar 1009192 2.78 14.84 0 0 0 0.84 1121
scriptLength 4461713 12.84 24.13 0 4 7 13 1279
TABLE I

BASIC SUMMARY STATISTICS OF LARGE DATASET OF OVER ONE MILLION SCRATCH PROJECTS.

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
Views 519 80,317.9 115,952.1 15,780 32,559.5 48,887 83,379 1,916,543
Favorites 519 2,632.9 1,705.8 631 1,579 2,032 3,103.5 13,203
Loves 519 3,180.4 2,006.9 734 1,966.5 2,479 3,775.5 16,419
Remixes 519 593.4 1,347.1 26 137.5 265 505 22,589
Sprites 519 18.9 28.9 0 5 12 23 401
Scripts 519 109.4 246.6 1 23 56 116 3,869
Blocks 519 1,217.2 1,748.0 2 222 621 1,383 14,801
TABLE 1T

BASIC SUMMARY STATISTICS OF 519 POPULAR SCRATCH PROJECTS

N Median  Pctl(70)
scriptLength (LS) 4461713 7 11
foreignAttrAccessNum (FE) 66725 2 4
duplicatedStringGroupSize (DS) 126475 3 4
stringLength (DS) 190881 10 18
TABLE III

THRESHOLDS FOR CERTAIN SMELL DETECTION

D. Script Addition Metric

This metric measures the differences between the original
project and its remix. We extract the added code by using
a third-party JSON diff tool, which structurally compares the
JSON representations of the original project’s source code and
that of its remixes. The tool produces a comprehensive list of
all basic changes (i.e., add, remove, move, replace, and copy),
applying which would transform the original JSON file to that
of the remix version.

To reliably approximate the actual extent of code changes
between the original projects and their remixes, we filter
remove, move, and copy to focus on the add and replace
operations. The replace operation replaces a script segment
with a new one. Although changes made to the JSON source
file can be mapped to 4 basic code element types (i.e.,
scriptable, script, block, literal value), we found changes with
a script as the unit of change to be the most meaningful
modification. In other words, we do not count block additions
to existing scripts. However, we do count all scripts in the
new Sprites added to a project. To calculate the Script Addition
metric, we sum the add and replace operations, and then divide
the result by the total number of blocks, so as to adjust for
different project sizes. We use the median of Script Addition
to represent the average change rate calculated for each pair
of original projects and their remixes. For projects with a
high number of remixes, we sample 100 remixes randomly
to compute this metric.

E. Large-scale assessment of software quality

We conduct a large-scale analysis of over one million
Scratch projects leveraging the supercomputing facility at our
institution. To process a large volume of computationally
intensive program analysis tasks, the infrastructure makes use
of the Hadoop MapReduce framework [21]. Our Java-based
analysis tool integrates naturally with Hadoop, achieving the
required scalability by batch analyzing multiple projects con-
currently. The analysis results expressed in the JSON format
are stored in the MongoDB database for subsequent data
analytics, for which we utilize Apache Spark[22], a cluster
computing framework for interactive data analysis. Figure 1
gives a high-level overview of our analysis infrastructure.

Data Collection Analysis Result Aggregation

Storage

Retrieve Exploratory
JSON project @ Analytics,
' Source LDatabaSJ Query and
& Metadata (NosQl) Reporting
scratch.mit.edu
Soark 5

Batch Analysis (Hadoop Cluster)
Code
Smell
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Fig. 1. Large-scale smell analysis infrastructure for block-based software.
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V. RESULTS AND TAKEAWAYS

This section presents the results and discusses them in detail
for each of the research questions posed.

A. RQI: Which known code smells can also be commonly
found in Scratch programs?

We present a catalog of 12 Scratch code smells. For each
identified smell, we also point out its variants in other lin-
guistic contexts. When presenting various cut-off thresholds



for counting a code pattern as a smell, we make use of the
statistical thresholds presented and explained in Section V. We
derive our statistics-based thresholds from a large dataset of
Scratch projects following the approach first presented by [20].

Catalog of code smells in Scratch:

SMELL 1 Broad Variable Scope (BV) A variable is marked
as broad scope when the variable is made visible to all
sprites, but is only used in one sprite. By following commonly
accepted design practices, variables should be made local to
the scope that uses it. Proper variable scope helps improve
comprehensibility as it tells to which sprite the variable
belongs. Too many global variables can also be confusing
for programmers trying to find the right variable in the script
palette and the drop-down menus. Example of smells in other
contexts: [23]

SMELL 2 Duplicate String (DS)
String values are considered duplicate if the same string values
of length at least 18 is used in at least 4 different places. Other
contexts: [8]

SMELL 3 Duplicate Code (DC)
A fragment of code is duplicated as a way to reuse existing
functionality of code at multiple locations in the program.
Other contexts: [8]

SMELL 4 Feature Envy (FE)
A data producing script is in a different sprite from the one
that uses the data. If there is a 1-to-1 relationship between
such sprites, they should not be separated, having to talk to
each other via a global variable. A better design would have a
single sprite, with scripts communicating with each other via
a local variable. Other contexts: [6], [12]

SMELL 5 Inappropriate Intimacy (II)
A sprite can check on other sprites’ attributes through sensor
blocks. However, excessively reading of other sprite’s private
variables (at least 4) can lead to high coupling between sprites.
Other contexts: [6], [12]

SMELL 6 Long Script (LS)
An unreasonably long script can suggest inadequate decom-
position and hinder code readability. A script is considered
too long if there are more than 11 blocks measured vertically.
Other contexts: [6], [12]

SMELL 7 Middle Man (MM)
A long chain of broadcast-receive can be used to pass a
message from one script to another. However, using this ab-
straction to simply delegate work without actions is considered
a code smell. Other contexts: [6]

SMELL 8 No-op (NO)
A user event-based script that performs nothing can be re-
moved. A common occurrence is event-handling code with no
action associated with it. Other contexts: [12]

SMELL 9 Uncommunicative Name (UN)
Although other programming entities could suffer a similar
effect, this smell focuses particularly on a problematic naming

of a sprite —"“Sprite” which is highly common name since it
is the default name that the IDE gives to generic sprites at the
creation time. The evidence of this smell is presented in the
work by Moreno and Robles[15]. Other contexts: [6]

SMELL 10 Undefined Block (UB)
Scripts can be copied from different projects using the Scratch
programming environment feature called “backpack”. The
scripts with calls to a custom block without its definition will
be rendered as undefined blocks, thus ceasing to contribute
any useful functionality to the project. This smell is commonly
introduced when custom block definitions are not copied and
placed first. The rationale of this code smell is similar to No-
op.

SMELL 11 Unreachable Code (UC)
An unreachable script can be safely removed without affecting
the program behavior. A script is considered unreachable if it
is the receiver of a nonexistent message. This particular case is
often caused by removing only the broadcast blocks without
adjusting their corresponding receiver blocks. Note that our
analysis disregards the fragment scripts not beginning with
event blocks, as they are commonly used by Scratch program-
mers to experiment with code and to initialize persistent data.
Other contexts: [12], [8]

SMELL 12 Unused Variable (UV)
The Scratch programming environment lets a programmer
declare variables in the data palette before they can be used
in the scripting area. However, the programming environment
provides no support to check if the declared variables are
unused and can be safely removed. The rationale of this code
smell is similar to that of Unreachable Code.

B. RQ2: What can the analysis of popular Scratch projects
teach us about the state of software quality in this program-
ming domain?

Scratch projects can be cloned, referred to as “remixed”
in the Scratch terminology. The remixes can be traced back
to their original projects. In this study, we examine whether
popular projects with high code changes in their remixes tend
to exhibit higher software quality.

1) RQ2.1: Do projects with a higher Script Addition metric
value exhibit higher software quality?: We consider popular
projects of medium sizes, as defined as being in the range of
between the 25" and the 75" percentiles (200-1,400 blocks)
of all project sizes. We consider two project subsets that we
refer to as:

1) high-change projects: 59 popular remixed projects whose
script Addition metric is ranked in the top 25;

2) low-change projects: 87 popular remixed projects whose
script Addition metric is ranked in the bottom 25;

Table V reports on the medians of the studied code smell
metric values for each of these subsets.

We visualize the smell incidence in the two subsets using
boxplots, and test if they are drawn from the same distribution



N Stdv. Min  Median Max  Pctl.70.  Pctl.80.  Pctl.90.
BV 51.00 14.60 0.00 15.48 50.00 24.70 32.86 38.57
UC  59.00 0.93  0.00 0.00 5.68 0.00 0.15 0.42
DC 59.00 046  0.00 0.44 1.98 0.70 0.87 1.08
DS 25.00 23.09 0.00 0.00  100.00 0.00 0.00 28.57
FE 59.00 5.36  0.00 0.00 27.00 0.00 0.00 6.37
I 59.00 0.25  0.00 0.00 1.00 0.00 0.00 0.00
LS 59.00 1033 0.00 9.18 40.00 14.40 18.90 29.21
MM  59.00 9.50  0.00 0.83 36.00 6.20 11.20 21.20
NO 59.00 20.38 0.00 2.79  101.00 7.77 19.20 37.70
UN 59.00 3495 0.00 6.51  100.00 38.25 61.61 89.38
UB 59.00 4.09 0.00 0.00 21.00 0.00 0.73 4.20
UV  51.00 2524 0.00 14.64 95.24 30.83 4495 61.25
TABLE IV

SUMMARY STATISTICS OF CODE SMELL OF PROJECTS IN THE BENCHMARKS AND THEIR 70’5”, 80”’, AND 90" PERCENTILE VALUES

LS metric values for
Low-change vs. High—change remixed projects

DC metric values for
Low-change vs. High—change remixed projects

UN metric values for
Low-change vs. High—change remixed projects
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Fig. 2. Incidence rate of code smells LS, DC, and UN in the two subsets (High-change vs. Low-change) of popular Scratch projects

Low changes (25%)  High changes (Top 25%)

Median SD Median SD P-values
BV 16.67 33.94 15.48 14.54 0.323
ucC 0.00 0.99 0.00 0.92 0.997
DC 0.54 0.48 0.44 0.46 0.044
DS 0.00 28.62 0.00 22.69 0.202
FE 0.00 4.53 0.00 5.32 0.795
1T 0.00 0.21 0.00 0.25 0.707
LS 15.38 17.58 9.18 10.29 0.003
MM 0.00 13.64 1.00 9.46 0.980
NO 2.00 18.89 3.00 20.94 0.968
UN 27.78 44.50 6.51 34.84 0.011
UB 0.00 3.77 0.00 4.77 0.847
uv 5.56 24.41 15.28 25.02 0.999
TABLE V

THE COMPARISON OF STUDIED CODE SMELL METRICS BETWEEN
PROJECTS WITH REMIXED CODE CHANGES IN THE BOTTOM 25% ( < 0.1)
VS. TOP 25% (> 0.82)

(null hypothesis) using a one-tailed Wilcoxon rank sum test*.
The null hypothesis is that both of these distributions should
be the same. Figure 2 shows boxplots of the LS, DC, and UN
smell metrics for the remixed projects, whose Script Addition
metrics are in the bottom 25% and the remixed projects whose
Script Addition metrics are in the top 25%. The boxplots show
the trends of a lower smell incidence rate in the high-change

4The Wilcoxon rank sum test is a non-parametric test that is not sensitive
to outliers, as it does not assume any distribution of sample data.

subset. We omitted the boxplots comparing other code smells
in the two subsets for brevity, as they do not show any clear
trends and their test values are not statistically significant.

The non-parametric Wilcoxon rank sum test (with continuity
correction) for LS, DC, and UN conclusively rejects the null
hypothesis that the two subsets (low-change remixed projects
and high-change remixed projects) are drawn from the same
distribution. Table V presents the corresponding effect size
(difference of medians) and p-values. As can be observed, the
medians of UN and LS smell incidence rates in the high-
change subset are dramatically lower than that of the low-
change subset. DC has a significant but smaller effect size,
based on the median difference of the smell incidence rate.
Takeaway: The low-change projects exhibit software quality
that is noticeably worse than their high-change counterparts
in the presence of a high incidence rate of Long Script,
Uncommunicative Name, and Duplicated Code, known to
hinder code comprehensibility and extensibility. Being hard
to understand and extend, these projects tend to discourage
high-change remixes.

C. RQ3: How prevalent and severe is each studied code smell
in Scratch projects?

We study the prevalence of code smells in the dataset of
594,988 projects, selected from the initial 1,009,192 projects



Smell N %Prevalence  %Low risk  %Moderate risk ~ %High risk % Very high risk
LS 594,988 51.00 71.13 5.03 8.55 15.30
UN 591,621 48.00 67.36 8.57 5.97 18.10
DC 594,988 35.00 75.86 3.11 3.26 17.77
BV 328,016 30.00 54.86 3.09 3.85 38.20
NO 594,988 28.00 93.71 3.24 1.09 1.96
UV 328,016 20.00 77.51 5.25 6.73 10.50

MM 594,988 17.00 94.02 2.17 1.75 2.06
DS 276,891 13.00 71.71 0.00 14.00 14.29
UC 594,988 9.00 91.30 1.51 1.42 5.77
UB 594,988 8.00 92.29 0.00 5.60 2.11
FE 594,988 5.00 94.63 0.00 2.89 2.48

I 594,988 4.00 95.88 0.00 0.00 4.12
TABLE VI

PREVALENCE AND SEVERITY OF CODE SMELLS IN THE LARGE DATASET

as containing more than 20 blocks as described in IV-B. For
each code smell, we count the number of projects as being
afflicted by the smell if at least one code smell instance
is found. We report on the prevalence of smells as the
percentage of the smell afflicted projects over the total number
of projects analyzed for the smell of interest. Please note that
the number of projects considered for each code smell can
vary since certain code smells may not be applicable in some
projects and thus we exclude them from the calculation. For
example, variable-related code smells (e.g., BV and UV) are
not applicable for projects that declare no variables.

Based on our analysis, LS, UN, DC, and BV show high
prevalence (> 30%); NO, UV, and MM show moderate
prevalence [10%, 30%]; and DS, UC, UB, FE, and II show
low prevalence (< 10%). Additionally, we assess the severity
of quality problems by categorizing the projects into increasing
risk levels. Code smells with low incidence rate may not be
harmful. Hence, one must determine the thresholds exceed-
ing which should classify a project as being at risk. Since
choosing threshold values can be subjective, we rely on the
approach first introduced by [24] that establishes benchmarks
for deriving thresholds. Having shown high Script Addition
metrics associated with likely high quality projects, we use
the high-change subset consisting of 59 projects, described in
V-B, as the benchmark for deriving practical threshold values
of different smell risks.

The summary statistics of the high-change subset as well
as the 70, 80 and 90th percentiles, used as the basis for
determining the risk intervals are presented in Table IV. We
base our intervals on [24] to categorize the severity of quality
problems using their percentile values: low (0-70%), moderate
risk (70-80%), high risk (80-90%), and very-high risk (>
90%). Table VI presents the prevalence and the severity of
the analyzed code smells.

If the quality of an average block-based project is similar
to that of popular projects, we expect to see about 10% of
the population distributed into each of the moderate, high,
and very high risk categories. However, our results show that
average projects have been afflicted by code smells differently.
That is, BV-38.2%, UN-18.1%, DC-17.8%, LS-15.3%, and
DS-14.3% are clearly in the very high risk category. Scratch
programmers may be simply unaware or indifferent of these
code smells and their harmful effect on program quality. The

remaining smells afflict the analyzed projects less commonly.
Takeaway: For the smells with high prevalence—BYV, UN,
DC, LS and DS—a larger percentage of average projects is
in the very high risk category, which is at odds with the
software quality exhibited by the popular projects with high
remixability.

VI. THREATS TO VALIDITY

The validity of our analysis results may be threatened
by several factors. The documented code smells may not
cover all code smells, which are known to be subjective,
while additional code smells can appear as new language
features and development tools are being introduced. The
selection of the benchmark projects may not be appropriate
for all types of projects (e.g., long scripts are a common
feature of storytelling projects). Our benchmark and its derived
thresholds aim at representing a broad category of projects, so
as to avoid the manual inspection required to include all types
of projects. We establish thresholds by observing the impact
on the comprehensibility and extensibility, as guided by our
Script Addition metric. In other words, these thresholds may
not be applicable for studying other aspects of software quality
(e.g., reusability, maintainability, etc.). To mitigate the risk of
the analyzer producing erroneous results, we manually sample
if their subsets adhere to the specified analysis metrics.

VII. CONCLUSIONS AND FUTURE WORK

This work sheds light on the state of quality in block-based
software. We provide empirical evidence of quality problems
negatively affecting the likelihood of Scratch projects to be
remixed and extended. Our large-scale study assesses not only
the prevalence of Scratch code smells, but also their severity,
presenting conclusive evidence of recurring quality problems
in this domain. The results of this work can inform future
efforts to support quality improvement practices in block-
based programming environments that are aligned with the
actual needs of this community.
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