
Sniffing Through Millions of Blocks for Bad Smells

Peeratham Techapalokul
Software Innovations Lab, Virginia Tech

tpeera4@cs.vt.edu

ABSTRACT
Code smells codify poor coding patterns known to degrade
software quality. Block-based languages have proven to be
a viable educational and end-user programming paradigm
with increasing adoption across a broad spectrum of users
and domains. This rising popularity of this programming
paradigm calls for a serious look at the program quality writ-
ten in block-based languages. While code smells in the con-
text of text-based languages have been studied extensively,
the research community lacks a comprehensive understand-
ing of code smells in block-based software.

To address this problem, we present the results of a large-
scale study of code smells prevalent in programs written in
the highly popular Scratch programming language. We an-
alyzed programs submitted to the public Scratch repository
in 2016, considering a million programs altogether. We dis-
covered interesting relationships between the prevalence of
certain smells and the levels of proficiency of the program-
mers commonly introducing them. Our findings not only can
help block-based programmers improve the quality of their
software, but also establish the requirements for refactoring
support in this programming domain.

Keywords
Software quality; Code smells; Block-based programming;
Scratch; Introductory computing; CS education

1. PROBLEM AND MOTIVATION
Code smells are patterns indicative of problems in the

code, known to degrade program quality. Code smells make
programs harder to read, harder to change, and harder to
maintain. Code smells is a useful and practical concept
in software quality improvement practices. They provide a
simple but useful vocabulary for developers to communicate
about software quality. For students, being able to recognize
code smells is a useful skill to avoid and improve upon bad
designs. For developers, code smells guide software quality
improvement efforts, such as refactoring.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCSE ’17, March 8–11, 2017, Seattle, WA, USA.
c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4698-6/17/03..

DOI: http://dx.doi.org/10.1145/3017680.3022450

In this work, we study block-based programming languages,
which have been growing in popularity, providing highly ef-
fective tools for pedagogical pursuits and end-user, domain-
specific development. The resulting increase in block-based
software calls for a serious look at its quality. Unfortunately,
while smells in text-based program have been thoroughly
studied, code smells in block-based software remain poorly
understood. This understanding is required to properly in-
form students and end-users about how to improve software
quality by avoiding bad designs. Finally, we plan to fol-
low up on our results by prioritizing our efforts in providing
refactoring support for block-based software.

2. BACKGROUND AND RELATED WORK
Previous works identify“bad practices and habits”in Scratch

programs, without explicitly identifying them as code smells.
Meerbaum-Salant et al.[2] identified scenario-based scripts
though intuitive, can lead to poor readability and maintain-
ability. A preliminary study by Moreno[3] uses static anal-
ysis to identify 2 bad programming habits (i.e., code repeti-
tion and bad object naming) in a 100 Scratch projects.

Aivaloglou and Hermans [1] study over 250,000 projects
Scratch programs to understand which types of blocks are
used most frequently as well as analyze the subject pro-
grams for three code smells: large scripts, dead code, and
duplicate block codes. Our work differs by not only consid-
ering generic code smells but also block-based specific code
smells. We intend to study code smells for block-based lan-
guages comprehensively in terms of the number of smells
considered (12 smells), and the number of subjects in our
study’s dataset (∼1M)

3. APPROACH AND UNIQUENESS
Adopting generic code smells as is might not be sufficient

or readily applicable to block-based languages due to the
unique differences of block-based languages (high-level and
domain-specific nature) and the users (the majority of pro-
grammers are non-professionals). In this study, we identify
code smells commonly found in block-based programming
languages in general and Scratch in particular. We also in-
vestigate the relationship of projects containing code smells
to the programmers’ levels of expertise.

Overall, our methodology for identifying a catalog of code
smells relies on personal observation, Scratch discussion fo-
rums, and those of other researchers and practitioners. We
identify a total of 12 distinct code smells with a brief de-
scription of each smell as well as its prevalence in Table
1. Our study subjects comprise a collection of 1,066,308



Name Abbrv Freq (%) Description

Broad Variable Scope BVS 56.0 A variable with its scope broader than its usage does not tell which scriptable the variable belongs. Too
many global variables clutter script palette and drop-down menus.

Uncommunicative Naming UN 52.0 Generic naming started with Sprite or message (e.g. “Sprite2” and “message1”) make programs unreadable
Long Script LS 47.0 Long script (longer than 11 BLOCS) suggest inadequate decomposition and hinder code readability
Duplicate Code DC 46.0 Repeated sequence of blocks regardless of block arguments is used as a way to reuse code
Unused Custom Block UCB 29.0 A script definition of an unused custom block can be safely removed without affecting the program behavior
Unused Variable UV 25.0 A variables is declared but never used anywhere in the program
Unreachable Code UC 23.0 An unreachable script can be safely removed without affecting the program behavior
Hard-Coded Media Sequence HCMS 13.0 A sequence of media elements are hard-coded as block arguments
Duplicate String DS 10.0 Same string values are repeatedly used in multiple program locations
Unorganized Script US 6.0 Similar event-based scripts are scattered around making the program hard to navigate
Unnecessary Workaround UW 6.0 Use of polling of flag variables to direct control flow to recreate broadcast-receive mechanism
Extreme Fine-Grained Script EFGS 2.0 Breaking up of functionally similar scripts into several small fine-grained event-based scripts

Table 1: Description of each smell and the percentage of code smells found in the sample program subjects

PCT=1PCT=2PCT=3Size=small(10-100blocks)48,655273,033100,701Size=medium(101-300blocks)1,08236,05940,584Size=large(300-1,000blocks)1035,90113,673

Table 2: Distribution of the program subjects

Scratch projects. We define a set of metrics necessary in the
study. We develop a code smell analyzer operating at the
AST level, and address the scalability challenge by making
use of the Hadoop MapReduce on an HPC cluster.

We investigate the relationship between“smelly”programs
and their programmers’ computational proficiency. We rank
programmers by their computational thinking (PCT) scores:
1:basic, 2:developing, 3:proficient. Our PCT score extends
the prior computational thinking (CT) metrics [4], which an-
alyzes block-based programs on 7 computational concepts
(e.g., data abstraction, flow control, etc.). PCT considers
multiple projects written by the same programmer to in-
crease the CT score accuracy.

4. RESULTS AND CONTRIBUTIONS
Table 1 shows how prevalent each smell is, ordered by

the most to least prevalent smells, while Table 2 shows the
distribution of the subject programs categorized by size and
PCT level. The insights we gained from the result of this
study can be summarized as follows:

The programming environment is partly responsible for
the top two Scratch specific code smells (BVS & UN), par-
ticularly, by having global as the default variable scope and
auto-generated generic name as default naming for program-
ming elements. The lack of programming support to aid
programmers to identify Dead Code smells (UCB, UV, UC)
may have caused them moderately prevalent.

Block-based programs are plagued with Duplicate Code,
which confirmed the result of previous work[1].

We find interesting insights from the study of relation-
ship between projects containing smells and their project
authors’ PCT level, shown graphically as a heatmap in Fig-
ure 1. First, code smell are rare for programs created by
programmers with the PCT=1 regardless of project size
level. This indicates the programs these programmers cre-
ated are not complex enough to exhibit code smells we con-
sidered. Overall, a small projects authored by programmers
of PCT=2 (developing status), are most prone to all code
smells. Certain smells (e.g. BVS, UN, and UC smells are
less prevalent as projects grow in size as programmers may
have been more careful to avoid them to make the program
easier to work with). Certain smells are prevalent (US) re-
gardless of the PCT levels of the program authors.

Overall, the findings suggest the need for refactoring tool
support for block-based programmers, while the efforts to
provide such support should focus on the more prevalent
code smells, as trouble spots for the majority of program-

mers. If block-based programmers can be better informed
about which smells to avoid when working with increasingly
complex projects, the overall quality of block-based software
is bound to improve.1

Figure 1: The proportion of code smells across
groups of programmers with different PCT levels
(1-3) and project sizes(S:small, M:medium, L:large)

5. REFERENCES
[1] E. Aivaloglou and F. Hermans. How kids code and how

we know: An exploratory study on the Scratch
repository. In Proceedings of the 2016 ACM Conference
on International Computing Education Research, ICER
’16, pages 53–61, New York, NY, USA, 2016. ACM.

[2] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari.
Habits of programming in Scratch. In Proceedings of
the 16th Innovation and technology in computer science
education Conference, pages 168–172. ACM, 2011.

[3] J. Moreno and G. Robles. Automatic detection of bad
programming habits in Scratch: A preliminary study.
In Frontiers in Education Conference (FIE), 2014
IEEE, pages 1–4, Oct 2014.

[4] G. Robles, M. Rom, et al. Comparing computational
thinking development assessment scores with software
complexity metrics. In 2016 IEEE Global Engineering
Education Conf. (EDUCON), pages 1040–1045. IEEE.

1This research is supported in part by the National Science
Foundation through the Grant 1134843.


