
Quality Hound — an Online Code Smell Analyzer
for Scratch Programs

Peeratham Techapalokul and Eli Tilevich
Software Innovations Lab

Dept. of Computer Science
Virginia Tech

Blacksburg VA, USA
{tpeera4, tilevich}@cs.vt.edu

Abstract—In this showpiece, we demonstrate the functionality
of Quality Hound — an online program analysis tool that takes
as input a Scratch project and presents to the user a visual rep-
resentation of the detected quality problems. Made accessible via
a browser-based user interface, Quality Hound is instantaneously
accessible to any Scratch user all over the world. The design of
Quality Hound is informed by our research on cataloging and
automatically detecting recurring quality problems, commonly
referred to as code smells. We envision that Quality Hound can
benefit the entire Scratch community by raising the awareness
of software quality in this visual programming domain.

I. INTRODUCTION

Block-based programming has proven spectacularly suc-
cessful as an educational tool for introductory computing
learners. The Scratch community encompasses more than 19.6
million users who have collectively contributed more than
23.7 million projects to a publicly shared online repository1.
Because of the exploratory and freewheeling nature of Scratch,
one may think of software quality being at best irrelevant
and at worst inimical for the intended key goals of this pro-
gramming community. If the goal of Scratch is to encourage
students to learn how to program, would drawing their atten-
tion to the quality of their yet inchoate programming output
be detrimental to achieving this goal? Why not postpone all
software quality discussion until students have mastered the
introductory computing concepts?

However, recent research has shown that the issue of soft-
ware quality is paramount to block-based programming and
the educational objectives that this domain aims to accomplish.
Several recent research studies [1], including our own work
[2], have shown that Scratch programs are rife with recurring
quality problems, which indeed hinder the achieving of various
educational objectives. Specifically, because of the communal
nature of Scratch, students tend to learn from each other. In
that light, poorly designed projects are known to be hard to
understand, modify, and reuse. As we have discovered, existing
projects that have been heavily evolved by others are likely to
exhibit higher quality than those ones left unmodified [2].

In addition, the intuition of bad habits being hard to break
similarly applies to learning programming practices. As we

1 https://scratch.mit.edu/statistics/ (accessed July 2017)

have discovered, once introductory students develop poor
programming habits, they tend to continue following them,
even as their level of programming proficiency increases [3].
Hence, the issue of software quality is important and timely
in this visual programming domain.

To improve software quality, one must first be able to
understand exactly where and how the quality is lacking. The
software engineering community has embraced the concept
of code smells [4] as a shared vocabulary to communicate
about recurring quality problems. In the block-based pro-
gramming community, researchers thus far have made few of
their quality analysis tools available to end users for learning
and experimentation. Our work is inspired by Dr. Scratch2

[5], a browser-based tool for assessing Scratch programming
proficiency that also detects three code smells (i.e., sprite
naming, duplicated code and dead code) in the analyzed code.
Dr. Scratch presents the detected smells textually, making it
challenging for programmers to trace the identified smells back
to the corresponding visual program parts.

In contrast, our tool—Quality Hound—improves the utility
of software quality analysis for block-based software by plac-
ing at the user’s fingertips a visual, browser-based code smell
analyzer for Scratch projects. The analysis engine of Quality
Hound comprises the 12 state-of-the-art quality analyzers that
we originally developed to produce the experimental results
for the paper, appearing in the main technical program of the
VL/HCC 2017 conference.

Specifically, Quality Hound parses JSON-based ASTs of
Scratch programs into an internal representation used by
the analysis routines. The analyzers are implemented using
JastAdd [6], a Java-based language processing framework. The
detected code smells are expressed as block regions, so the
smelly blocks or scripts can then be reported to the user.
Finally, the presentation layer formats the detected blocks
and scripts, to be rendered in the browser by a third-party
JavaScript library3. Table I briefly summarizes the code smells
Quality Hound detects. We refer the interested reader to our
technical paper [2] for details about these code smells, their
prevalence, and their impact on code reuse.

2http://www.drscratch.org/
3https://github.com/scratchblocks/scratchblocks

978-1-5386-0443-4/17/$31.00 c©2017 IEEE

http://www.drscratch.org/
https://github.com/scratchblocks/scratchblocks

Code smell Description

Broad Variable Scope A variable with its scope broader than its usage
Duplicated String Same strings or substrings are used in multiple places
Duplicated Code Repeated sequence of blocks is used as a way to reuse code
Feature Envy A data producing script is in a different sprite from the one that uses the data, requiring global variable

to be used to pass the data around
Inappropriate Intimacy Heavy usages of sensor blocks to check the attribute value of other sprites
Long Script A long script makes code hard to understand
Middle Man A long chain of broadcast receive to delegate work
No-Op A user event-based script that performs no actions
Uncommunicative Name Naming of sprite (started with “Sprite”) is not meaningful
Undefined Block A custom undefined block.
Unreachable Code An unreachable event-based script due to the absence of a corresponding broadcast block
Unused Variable A variable is created but remains unused in the project

TABLE I: Code smells detected by Quality Hound

Quality Hound renders our analysis infrastructure available
to end users, who are expected to possess little to no expertise
in software quality analysis. The browser-based user interface
lowers the learning curve and increases usability. The tool
takes the URL of a Scratch project as input and then presents
the detected smells visually to the user in a web browser
window. In Figure 1, one can see Quality Hound in action
and a screenshot of the tool showing the detected smells. Users
with some familiarity of the analyzed project can leverage the
tool’s visual output to navigate to the exact locations of the
detected smells. By better understanding why the tool signaled
the presence of code smells, programmers can determine if
they should engage in quality improvement.

II. RELEVANCE

Quality Hound will be ultimately relevant and interesting
to the VL/HCC community because of the multifaceted visual
aspect of this tool. That is, Quality Hound is a visual program
analysis tools for a visual language. It demonstrates how
program analysis and quality checking infrastructure can be
provided and made accessible for visual languages. Because of
the current trend of democratizing program analysis and verifi-
cation tools, so as to make them easily accessible for rank-and-
file programmers, our work on designing and implementing
Quality Hound can offer valuable insights for infrastructure
developers of other visual languages.

III. CONCLUSION

This showpiece presents Quality Hound, an automated pro-
gram analysis tool for end-users. It enables end-user quality
assessment for block-based software. Presenting our tool is
expected to spur constructive discussion about various issues
related to software quality in block-based software, end-user
software quality analysis, and the role of visual tools in
pedagogical pursuits.

AVAILABILITY

Quality Hound can be accessed at: http://research.cs.vt.edu/
quality4blocks/projects/quality-hound/.

ACKNOWLEDGEMENTS

This research is supported in part by the National Science
Foundation through the Grant DUE-1712131 and the Royal
Thai Government scholarship.

Quality Hound

Fig. 1: A screenshot showing detected code smell instances visually
presented to the user

REFERENCES

[1] E. Aivaloglou and F. Hermans, “How kids code and how we know: An
exploratory study on the Scratch repository,” in Proceedings of the 2016
ACM Conference on International Computing Education Research, ser.
ICER ’16. New York, NY, USA: ACM, 2016, pp. 53–61.

[2] P. Techapalokul and E. Tilevich, “Understanding recurring quality prob-
lems and their impact on code sharing in block-based software,” in
Visual Languages and Human-Centric Computing (VL/HCC), 2017 IEEE
Symposium on, 2017.

[3] ——, “Understanding recurring software quality problems of novice
programmers,” Virginia Tech, Article, 2017. [Online]. Available:
http://hdl.handle.net/10919/78337

[4] M. Fowler and K. Beck, Refactoring: Improving the design of existing
code. Addison-Wesley Professional, 1999.

[5] J. Moreno-León, G. Robles, and M. Román-González, “Dr. Scratch:
Automatic analysis of Scratch projects to assess and foster computational
thinking,” RED. Revista de Educación a Distancia, no. 46, pp. 1–23,
2015.

[6] G. Hedin and E. Magnusson, “JastAdd—an aspect-oriented compiler
construction system,” Science of Computer Programming, vol. 47, no. 1,
pp. 37–58, 2003.

http://research.cs.vt.edu/quality4blocks/projects/quality-hound/
http://research.cs.vt.edu/quality4blocks/projects/quality-hound/
http://hdl.handle.net/10919/78337

	Introduction
	Relevance
	Conclusion
	References

