
Enhancing Block-Based Programming Pedagogy to
Promote the Culture of Quality From the Ground Up

A Position Paper

Peeratham Techapalokul and Eli Tilevich
Software Innovations Lab

Virginia Tech
Blacksburg VA, USA

{tpeera4, tilevich}@cs.vt.edu

Abstract—Block-based programming has proven extraordinar-
ily successful as a pedagogical tool for learning the fundamentals
of computing via an exploratory, unconstrained, and hands-on
approach. One would think that the issue of software quality is
inapplicable in this programming domain. Nevertheless, as recent
research shows, block-based programs, written by novice pro-
grammers, exhibit recurring quality problems. Although block-
based software is not intended for production environments, poor
quality can be detrimental to achieving the educational objectives
the very use of blocks aims for. Specifically, as we and other
researchers have been discovering, introductory programmers, as
they gain proficiency, tend to retain poor programming habits,
thus continuing to introduce recurring quality problems into their
programs. Evidence also indicates that poorly written code is less
likely to be reused, thus hindering the potential benefits of this
peer-learning mechanism. These findings call for a synergistic
effort from educators and tool developers to address the issue of
software quality in the context of block-based programming. This
effort will require innovating both in the realm of introductory
computing curricula and software infrastructure to improve
software quality.

Index Terms—Software quality; Block-based programming;
Introductory computing curriculum; Novice programmers; Soft-
ware refactoring

I. INTRODUCTION

Block-based programming has become a highly effective
means to introduce novice learners to the computing discipline.
Both introductory learners and end-users take advantage of
the visual interface and syntax-free program compositions
offered by block-based programming environments. Indeed,
block-based programming witnesses a growing adoption in
both formal and informal settings for learning programming.
However, the success of block-based programming is more
immediately evident in informal settings, with 19.6 million of
Scratch programmers and over 23.7 million projects created
and shared1.

Block-based programming often conjures up the spirit of
free exploration unbound by convention or guidelines. As a
way to learn, novice programmers are encouraged to tinker
with blocks. With this mindset in place, the issue of software
quality gets relegated to the margins of the programming
process if not disregarded altogether. Nevertheless, as we and

1https://scratch.mit.edu/statistics/ (accessed July 2017)

other researchers are discovering, software quality problems
in block-based programs are an issue whose impact surpasses
that of temporary annoyance.

The initial research in this domain focused solely on iden-
tifying the presence of software quality problems, while more
recent efforts shed light on how prone novice programmers
are to introducing quality problems in their code, the negative
effect of poor software quality on program comprehensibility
and modifiability, as well as how the presence of recurring
quality problems negatively affects the eagerness to reuse
existing code when engaging in collaborative learning.

Specifically, several works have raised concerns about the
poor quality of student-written block-based code. The very
nature of Scratch leads students to following bottom-up
exploratory programming practices, which go against well-
established software engineering principles such as ‘design
before implementation [1].’ Scratch projects written by high
school have been shown to contain duplicated code and
follow poor naming conventions [2]. The prevalence of quality
problems in block-based programs has been substantiated in
subsequent works, including an exploratory study of Scratch
programs [3], a study of quality problems in block-based
languages by Hermans et al. [4], and our own recent large-
scale assessment of quality problems in Scratch projects [5]. A
popular approach to evaluating software quality is to system-
atically identify and assess recurring quality problems based
on the concept of “code smells,” coding patterns indicative
of implementation and design shortcomings known to degrade
non-functional qualities (e.g., comprehensibility, modifiability,
etc.). Hence, we have on our hands strong empirical evidence
that confirms the presence of recurring quality problems in
programs written by introductory students.

In this position paper, we offer our perspectives on the
importance of software quality for introductory CS curriculum,
including the negative implication of recurring quality prob-
lems on the formation of disciplined programming practices
and the learning process in general. We outline our vision
and research activities to promote the culture of quality from
the ground up, an initiative that can make software quality
an integral part of block-based programming pedagogy. By
realizing our vision, we hope to enable introductory program-

1



ming students not only to obtain basic programming literacy,
but also to internalize the value of software quality, and
some of the proven quality enhancing practices followed by
professional software developers.

II. WHY SHOULD NOVICE PROGRAMMERS CARE ABOUT
SOFTWARE QUALITY AND QUALITY IMPROVEMENT?

The block-based programming community, including stu-
dents and CS educators, should treat the issue of software
quality seriously for multiple reasons. Next, we outline what
we see as the key points:

A. Software quality impact on modern society

Quality is essential to the everyday functioning of modern
society. As Juran et al. put it in their Quality Handbook [6] “the
importance of quality has continued to grow rapidly. To some
extent, that growth is due in part to the continuing growth
in complexity of products and systems, society’s growing
dependence on them, and, thus, society’s growing dependence
on those ‘quality dikes’.” Modern society critically depends on
software, which is part and parcel of an ever-growing number
of goods and services. Despite its wide utilization, software is
known to suffer from one of the highest failure rates across
all engineering artifacts due to its poor quality [7].

The quality of any product is determined by the production
processes through which it is developed. To meet high quality
standards, people involved in these processes must recognize
quality as a critical requirement. In that light, as a society,
if we are to drastically improve software quality, we need to
accordingly condition the mindset of software developers in
regards to this issue. Computing education has a huge role to
play in this endeavor. To that end, we advocate a radical notion
of promoting the culture of quality from the ground up. That is,
we propose that software quality be taught alongside the very
fundamentals of computing, and block-based programming is
at the focal point of this initiative.

B. Code quality affects learning effectiveness

Poor code quality can negatively impact the very founda-
tions of the learning process. Poor software quality hinders the
computing learner’s ability to read and understand code, the
medium of communication in computing. As Martin Fowler
put it “Any fool can write code that a computer can understand.
Good programmers write code that humans can understand”
[8]. The results of a controlled experiment by Hermans et
al. [9] show that students find poor code quality programs
hard to understand and modify. In our recent work, we also
encounter the negative impact that poor software quality can
have on the willingness of students to reuse and modify
existing projects [5]. In particular, our results suggest that poor
code quality can render a project to appear uninviting to other
novice programmers to modify, as compared with projects
enjoying similar levels of popularity. Thus, poor code quality
undermines code sharing, or remixing, an essential learning
activity in block-based programming [10].

C. Focusing on software quality can foster the adoption of
good programming practices

The habits and discipline required to achieve and maintain
good software quality cannot be taught directly, but rather
can be promoted and cultivated. Will Durant articulates this
principle thusly: “We are what we repeatedly do. Excellence
then is not an act but a habit.” As it turns out, disciplined
programming practices fail to naturally arise in parallel with
increases in programming proficiency. As a recent study by
Robles et al. shows, students still copy and paste code even
knowing how to avoid this harmful practice [11]. Our recent
work [12] shows that students continue to introduce quality
problems in their programs, even as their levels programming
proficiency keep increasing. Thus, it is never too early to
start educating students about software quality practices. Even
introductory students should be encouraged to write not just
working programs, but rather high-quality working programs.

III. CALL FOR ACTION

Traditional engineering disciplines have long embraced the
importance of quality, with engineering education treating this
concept as an integral part of the professional curriculum
[13]. Inspired by the vast quality improvements experienced
by traditional engineering pursuits [14], we next outline our
ambitious agenda for promoting the culture of quality in the
context of introductory computing curriculum centered around
block-based programming. This agenda comprises several in-
terrelated tasks: understanding the problem, building a general
knowledge base, and creating innovative pedagogical tools.
Once these tasks are successfully carried out, the resulting
pedagogical advances are expected to convince CS educators
that it is feasible and useful to teach software quality starting
from the very fundamentals of computing.

A. Getting a CS education community buy-in

Solving a problem of that magnitude requires a communal
effort, and the first step is to get a buy-in from the CS
Education community about the importance of promoting the
culture of quality from the ground up. The first step in this
endeavor is to draw attention of the community to the very
presence of the issue of quality. Some research efforts focus
on solving this exact problem, with recent studies collecting
strong empirical evidence of the presence of recurring quality
problems in block-based software, assessing the negative ef-
fects of poor code quality, and others as outlined in Section
II-B. Other recent findings show that one can effectively teach
introductory K-12 students about proper software engineering
principles, which include treating software quality as an im-
portant consideration [15]. Nevertheless, more research in this
area is needed to provide definitive empirical evidence about
not only the negative consequences of neglecting the issue of
quality in introductory computing curriculum, but also how
innovative education interventions in this realm can improve
various learning outcomes.

2



B. Explicit strategies of software quality practices in blocks

Promoting the importance of software quality and its prac-
tices will require creating new knowledge and materials to
properly support student learning from the conceptual and
skills perspectives. A promising direction worth investigating
further is Soloway’s rigorous instructional framework [16],
which observes expert programmers possessing tacit knowl-
edge and strategies, that unconsciously guide their program-
ming practices. By analogy, quality should also be teachable in
a form of explicit strategies. In other words, the software qual-
ity control and improvement practices of expert practitioners
can be captured as explicit strategies to be taught to students.

Conceptual challenges lie in adapting these relevant quality
improvement strategies to the context of block-based program-
ming and presenting them at the level that novice programmers
can easily internalize.

In terms of the specific strategies, in our work we focus
on quality-related coding patterns. Originally developed and
used in the architecture field, the concept of patterns has also
been widely applied in software design [17]. Patterns codify
expert knowledge, and are commonly described along with
their motivation, rationale, context, and resulting behavior.
For example, code smells are code patterns indicative of
design problems [8], and have been a recent research focus
for studying quality problems in block-based software. That
is, code smells provide explicit strategies for developers to
recognize quality problems in the codebase and a shared
vocabulary for them to communicate about these problems.

What has been left relatively unexplored so far are common
code patterns, which are conducive to producing high qual-
ity software. Certainly, the aim of introducing such quality
improving patterns to introductory students is not to require
that they closely follow these exact patterns, or that they
memorize these patterns by rote. In contrast, being introduced
to these patterns can help students develop an appreciation of
the underlying rationale and motivation of these patterns. This
appreciation will promote the culture of quality and influence
how students approach the programming process.

C. Software infrastructure for quality improvement

Popular block-based programming environments can be
enhanced to allow novice programmers to engage in software
quality improvement practices as a natural extension of other
learning activities. Specifically, a refactoring infrastructure that
automates behavioral preserving transformations, can be very
effective as a means to promote continuous quality improve-
ment practices. There are several challenges that stand on the
way of realizing this vision. For one, thus far, refactoring has
been applied almost exclusively in the domain of text-based
languages. It remains an open question how refactoring should
be provided in block-based programming environments.

One important requirement is that refactoring support be
made intuitive and friendly for novice programmers. One
concern is that refactoring may seem magical to students,
who may not have yet developed a complete picture of
what is happening behind the scenes. Therefore, special care

must be taken to make the refactoring process transparent to
students. We posit that drag-and-drop interfaces, which have
been previously applied to improve refactoring usability in
text-based development environments [18], to be also well-
applicable for block-based environments. Since drag-and-drop
mechanisms are innate to blocks, one can leverage this feature
to build refactoring gestures in this computing domain. One
potential educational benefit is that refactoring support will
render software as a malleable artifact to novice programmers,
something that can be intuitively transformed at will, improv-
ing structure and design in the process.

Figure 1 shows one possible way to make Extract Custom
Block refactoring intuitive. A programmer can invoke this
refactoring by selecting a region of blocks and dragging it
outside of the original script’s area.

Additionally, to increase the educational value of the refac-
toring tool, following a learner-centered design [19] (i.e., in-
telligent tutoring system or scaffolding), quality improvement
practices can be made more accessible to novice programmers.
Augmenting the programming environment to support quality
improvement practices will allow individualized, feedback and
guidance required for effective learning in both formal and
informal settings.

Nevertheless, the success of quality improvement support
will require further study to evaluate the effectiveness of the
provided tools in how effectively they promote software qual-
ity practices among novice programmers. This infrastructure
development would be best introduced as part of a broader
pedagogical intervention that includes in-class presentations
and homework assignments that highlight the importance and
benefits of refactoring. In addition to students learners, end
users will also benefit by getting the ability to systematically
improve the quality of their block-based software.

IV. CONCLUSION

Software quality can no longer be ignored as an irrelevant
issue in the context of block-based programming and intro-
ductory computing curricula. While proven as a viable avenue
for introductory computing, block-based programming and its
pedagogy can be effectively enhanced with software quality
concepts and practices. If as a society we are to improve
the overall quality of our software infrastructure, we have to
change the software development culture, and this change can
be initiated from the introductory computing curriculum via
block-based programming pedagogy.

ACKNOWLEDGEMENTS

This research is supported in part by the National Science
Foundation through the Grant DUE-1712131.

REFERENCES

[1] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari, “Habits of program-
ming in scratch,” in Proceedings of the 16th annual joint conference on
Innovation and technology in computer science education. ACM, 2011,
pp. 168–172.

[2] J. Moreno and G. Robles, “Automatic detection of bad programming
habits in Scratch: A preliminary study,” in 2014 IEEE Frontiers in
Education Conference (FIE) Proceedings. IEEE, 2014, pp. 1–4.

3



3

OK Cancel

Extract Custom Block

AlienMotionName: 

1

2

drag and drop to 
empty space

Before

After

Figure 1. A refactoring interface mockup for a block-based programming environment

[3] E. Aivaloglou and F. Hermans, “How kids code and how we know: An
exploratory study on the Scratch repository,” in Proceedings of the 2016
ACM Conference on International Computing Education Research, ser.
ICER ’16. New York, NY, USA: ACM, 2016, pp. 53–61.

[4] F. Hermans, K. T. Stolee, and D. Hoepelman, “Smells in block-
based programming languages,” in 2016 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), Sept 2016, pp.
68–72.

[5] P. Techapalokul and E. Tilevich, “Understanding recurring quality prob-
lems and their impact on code sharing in block-based software,” in 2016
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2017.

[6] J. Juran and A. B. Godfrey, “Quality Handbook,” Republished McGraw-
Hill, pp. 173–178, 1999.

[7] C. Jones and O. Bonsignour, The economics of software quality.
Addison-Wesley Professional, 2011.

[8] M. Fowler and K. Beck, Refactoring: Improving the design of existing
code. Addison-Wesley Professional, 1999.

[9] F. Hermans and E. Aivaloglou, “Do code smells hamper novice program-
ming? A controlled experiment on Scratch programs,” in 2016 IEEE
24th International Conference on Program Comprehension (ICPC), May
2016, pp. 1–10.

[10] S. Dasgupta, W. Hale, A. Monroy-Hernández, and B. M. Hill, “Remixing
as a pathway to computational thinking,” in Proceedings of the 19th
ACM Conference on Computer-Supported Cooperative Work & Social
Computing, ser. CSCW ’16. New York, NY, USA: ACM, 2016, pp.
1438–1449.

[11] G. Robles, J. Moreno-León, E. Aivaloglou, and F. Hermans, “Software

clones in Scratch projects: On the presence of copy-and-paste in com-
putational thinking learning,” in Software Clones (IWSC), 2017 IEEE
11th International Workshop on. IEEE, 2017, pp. 1–7.

[12] P. Techapalokul and E. Tilevich, “Understanding recurring software
quality problems of novice programmers,” Virginia Tech, Article, 2017.
[Online]. Available: http://hdl.handle.net/10919/78337

[13] M. Zairi, Total quality management for engineers. Elsevier, 1991.
[14] S. B. Knouse, P. P. Carson, K. D. Carson, and R. B. Heady, “Improve

constantly and forever: The influence of w. edwards deming into the
twentyfirst century,” The TQM Journal, vol. 21, no. 5, pp. 449–461,
2009.

[15] F. Hermans and E. Aivaloglou, “Teaching software engineering prin-
ciples to K-12 students: A MOOC on Scratch,” in Proceedings of
the 39th International Conference on Software Engineering: Software
Engineering and Education Track, ser. ICSE-SEET ’17. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 13–22.

[16] E. Soloway, “Learning to program = learning to construct mechanisms
and explanations,” Communications of the ACM, vol. 29, no. 9, pp. 850–
858, 1986.

[17] S. Berczuk, “Finding solutions through pattern languages,” Computer,
vol. 27, no. 12, pp. 75–76, 1994.

[18] Y. Y. Lee, N. Chen, and R. E. Johnson, “Drag-and-drop refactoring:
intuitive and efficient program transformation,” in Proceedings of the
2013 International Conference on Software Engineering. IEEE Press,
2013, pp. 23–32.

[19] C. Quintana, J. Krajcik, and E. Soloway, “Issues and approaches
for developing learner-centered technology,” Advances in computers,
vol. 57, pp. 271–321, 2003.

4


