
Programming Environments for Blocks Need
First-Class Software Refactoring Support

A Position Paper

Peeratham Techapalokul and Eli Tilevich
Software Innovations Lab

Virginia Tech
Email: {tpeera4, tilevich}@cs.vt.edu

Abstract—Block-based programming languages and their de-
velopment environments have become a widely used educational
platform for novices to learn how to program. In addition, these
languages and environments have been increasingly embraced by
domain experts to develop end-user software. Though popular
for having a “low floor” (easy to get started), programs written in
block-based languages often become unwieldy as projects grow
progressively more complex. Software refactoring—improving
the design quality of a codebase while preserving its external
functionality—has been shown highly effective as a means of
improving the quality of software written in text-based lan-
guages. Unfortunately, programming environments for blocks
lack systematic software refactoring support. In this position
paper, we argue that first-class software refactoring support must
become an essential feature in programming environments for
blocks ; we present our research vision and concrete research
directions, including program analysis to detect “code smells,”
automated transformations for block-based programs to support
common refactoring techniques, and integration of refactoring
into introductory computing curricula.

Index Terms—refactoring, metrics, code smells, block-based
programming languages, end-user software engineering, com-
puter science curriculum, introductory programming.

I. INTRODUCTION

As a software project grows, so does the complexity of its
source code. Without targeted and timely programming efforts
to counter this complexity, it can quickly overwhelm the aver-
age programmer. Software refactoring—changing a program’s
structure to improve the program’s design while preserving its
external functionality—has become an indispensable part of
the modern software development process. Modern text-based
programming environments support refactoring via refactoring
browsers, sophisticated program analysis and automated trans-
formation engines; they enable the programmer to refactor
with confidence, with assurance of refactoring transformations
not changing the program in unexpected ways. This first-class
refactoring support, which has become an inextricable part of
modern integrated development environments (IDEs), serves
as one of the pillars of the iterative programming process, in
which development is intermingled with a continuous stream
of improvement and enhancement tasks[1], [2].

Block-based programming languages, including Scratch and
Blockly, have become highly popular by providing both a
“low floor” for novices to get started and a “high ceiling” for
more experienced programmers to create increasingly complex
projects over time. Despite their proven educational utility,
programming environments for blocks are still in infancy
compared with text-based languages when it comes to sup-
porting the software development process with state-of-the-art
software development tools, based on program analysis and
automated transformation.

Nevertheless, software engineered in block-based languages
suffers from the same problems of design rot and code qual-
ity deterioration, as programs become increasingly complex.
The problem is real. Scratch projects authored by novice
programmers have been found to contain a large quantities
of message passing and scripts scattering around[3]. Other
prevalent design problems included duplicate code, uncom-
municative name, excessive use of concurrent scripts, etc.
These manifestations of unnecessary design complexity and
code quality degradation make software written in block-based
programs hard to comprehend, maintain, and evolve.

We argue that the best practices of systematic refactoring
support for text-based languages can and should be applied
to block-based languages and environments, so that block-
based software can reap similar software engineering benefits.
To that end, programming environments for blocks should
be enhanced to provide support for program analysis and
transformation. State-of-the-art support is required to enable
block-based language programmers to become aware of design
problems as they arise by ascertaining standard software met-
rics used to measure code quality, to discover “code smells” to
uncover the symptom of poor design, and finally, to transform
programs automatically with a refactoring tool to safely and
efficiently improve their design.

The expected benefits will be immediately tangible: block-
based software that is easier to understand, modify, and evolve.
By systematically growing the refactoring support for block-
based languages, one can effectively raise their “high ceiling”
property; first-class refactoring support can equip the average
programmer with powerful automated tools for managing



program complexity. Systematic refactoring support can also
advance the role of block-based programming for end-user
software development. In the following discussion, we present
the research ideas and directions that will form the basis of this
effort as well as discuss some possible paths for integrating
refactoring into introductory computing curricula.

II. CAPTURING DESIGN QUALITY

Without a way to measure the design quality of a program,
one cannot be certain about when and where the program
needs improvement. Thus, essential to modern software de-
velopment process are the tools to evaluate the design quality
and to detect bad design. These can be achieved by using
software metrics, and identifying “code smells”, respectively.

A. Software Metrics

Software metrics aids programmers in understanding appli-
cations, getting an overview of a large system, and identifying
potential design problems [4]. Most of the metrics proposed
in the literature focus exclusively on text-based languages [4],
[5], [6]. For block-based languages, one promising research
direction would be to focus on the set of metrics to capture
both structural quality and visual organization.

Since the visual aspect is prominent for block-based lan-
guages, research questions should seek to answer how metrics
can be formulated to capture the software quality concerning
with the visual organization of the code. As suggested by
Conversy [7], the representation of code should rely on the
capability of the human visual system. “Programs must be
written for people to read, and only incidentally for machines
to execute[8].” Aside from the spatial layout enforced by
languages’ syntax, it would be interesting to explore how
one can measure the design quality (e.g., how the readability
of block-based programs is affected by visual grouping of
scripts.)

B. Code Smells

The concept of “code smells” is commonly used to iden-
tify various structural characteristics of software indicative
of design problems. The most notable work in this area is
the refactoring book by Fowler [9], which documents code
smells and the corresponding refactoring steps to remove them.
Evidence from both educators and researchers [10], [3], [11]
points out both structural (e.g., spaghetti code, duplicate code)
and visual organization shortcomings (e.g., the scattering of
small scenario-based scripts that cause “a confusing visual
effect”), which are prevalent in the Scratch language family.

For block-based languages, language-independent code
smells (e.g., Long Script, Duplicate Code, etc.) can be adapted
from the existing ones and more specific smells can be formu-
lated to capture the design shortcomings unique to block-based
language features for both structural and visual organization
aspects. A set of software metrics described previously can
be composed to capture high-level smells similar to [4]. To
automate the task of discovering code smells or refactoring
opportunities, a targeted research effort would need to focus

on formalizing the code smells and analyzing statistically the
thresholds of the metrics used. Realizing these research ideas
as a general framework for building automated code smell
detection tools for programming environments for blocks can
provide a practical tool for a wide programming audience.

III. SOFTWARE REFACTORING SUPPORT FOR
BLOCK-BASED LANGUAGES

As discussed above, software refactoring[12] has become an
intrinsic component of any non-trivial software development
effort. The quality of all software tend to degrade over time,
unless special efforts are put in place to actively counteract
the process. Software engineered in block-based languages
is subject to the same quality pressures [3], [11]. Practical
refactoring hinges on automated program transformation tools,
as refactoring by hand is often tedious and error-prone.

Figure 1 shows an example of a manual refactoring that
extracts a custom block (a.k.a. Extract Method), one of the
most commonly used refactoring transformations in text-based
development environments[1]. The simple Snap! program seg-
ment in Figure 1 makes a character jump differently depending
on which keyboard (space bar or up arrow) is pressed. Though
seemingly simple, the code in the before version is not easy
to read—a fragment of code represents jumping, yet it may
not be so obvious to the programmer trying to understand it.
Adding comments to the source code to clarify its meaning is
sometimes used as a simple fix, often a good indication of poor
code readability. What we have here is a unit of potentially
reusable functionality that can be used in multiple places in
the program. Unfortunately, when not encapsulated within a
method, a code fragment can only be reused by means of copy-
and-paste, thus replicating a code fragment in several places
within a project. This repeated sequence of code is a common
“code smell” known as Duplicate Code. As a result, not only
the code is hard to read, but it is also hard to change, as
the changes need be made everywhere in all duplicates (e.g.,
consider the changes one would need to make to add a gravity
effect to the jump). These issues would be further exacerbated
in the context of a large, real-world program.

In contrast, the code in the after version is improved with
respect to readability and reusability. In particular, when a
custom block is given a descriptive name, the improved code
is self-documenting, with a custom block name explaining the
high-level intent of the code fragment. The resulting program
is easier to read, with custom block names serving as code
comments. Extracting a code fragment into a custom block
increases the chance of it getting reused elsewhere in the
project.

One can see how simple refactoring transformations can
improve program comprehension and reusability, reducing
both code duplication and complexity. Unfortunately, modern
programming environments for blocks have limited support
for automated program transformation, required to support
refactoring. As a result, programmers can only refactor their
block-based programs by hand.



Fig. 1. An example of the code before and after performing (by hand) the
Extract Custom Block refactoring in Snap!

What constitutes a conceptual challenge is formulating a
set of systematic guidelines to determine which refactoring
techniques are necessary for block-based programming and
should be exposed as automated refactoring transformations
within the development environments. In other words, which
design problems plague block-based software most commonly,
and which of these problems are amenable to a refactoring
treatment. Because the refactoring research has almost ex-
clusively focused on text-based languages, the designers of
programming environments for blocks find themselves in need
of guidelines tailored specifically for them.

Another important research effort in that realm should
focus on the creation of internal program representations and
analysis tools in support of refactoring. Although some block-
based languages can be represented as text, analyzing the
textual representation may not be sufficient for the objectives
at hand. What is needed are internal representations that reflect
not only the semantic, but also the visual organization of a
block-based program. In other words, the refactorings should
be mindful of how blocks are displayed on the screen, so as to
increase program readability. A promising direction is to use
the refactoring techniques developed for text-based languages
as a starting point, and then modify and enhance them as
necessary for the needs of block-based programming.

IV. REFINEMENT-CENTRIC APPROACH TO BLOCK-BASED
SOFTWARE DEVELOPMENT

The pedagogical effectiveness of block-based languages and
their development environments is evident. These languages,
including Scratch, Snap!, and Blockly, have witnessed increas-
ing adoption as a means of teaching introductory program-
ming. Unfortunately, with the current lack of powerful refac-
toring support as discussed above, programming environments
for blocks can inadvertently condition novice programmers to
view programming as a single-step linear process, unaligned
with the iterative process of enhancement and improvement,
an intrinsic part of modern software development.

Although programmers can always refactor their block-
based programs by hand, the process can be tedious, error-
prone, and in some cases equivalent to rewriting from scratch
in complexity. As programs grow in complexity, programmers
are likely to forgo even simple refinements, thus adversely
impacting software quality with respect to modularity, cohe-
sion, coupling, etc. Forgoing refinements is an ill-conceived

programming habit that gives rise to potentially insurmount-
able difficulties in comprehending, maintaining, and reusing
software.

Making refactoring tools available for block-based lan-
guages will highlight the importance of continuous code
improvement in the minds of novice programmers, thereby im-
proving the pedagogical effectiveness of block-based program-
ming. Thus, the outlined research directions are concerned
with instantiating the theoretical bases of refactoring in block-
based languages and systematically evaluating the developed
technologies with diverse student audiences.

REFERENCES

[1] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor,
and how we know it,” IEEE 31st International Conference on
Software Engineering, pp. 287–297, 2009. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5070529

[2] K. Beck, Extreme programming explained: embrace change. Addison-
Wesley Professional, 2000.

[3] O. Meerbaum-salant, R. Israel, and M. Ben-ari, “Habits of Programming
in Scratch,” 2011.

[4] M. Lanza, R. Marinescu, and S. Ducasse, Object-Oriented Metrics in
Practice. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

[5] K. K. Chahal and H. Singh, “Metrics to study symptoms of bad software
designs,” SIGSOFT Softw. Eng. Notes, vol. 34, no. 1, pp. 1–4, Jan.
2009. [Online]. Available: http://doi.acm.org/10.1145/1457516.1457522

[6] K. A. M. Ferreira, M. A. S. Bigonha, R. S. Bigonha, L. F. O. Mendes,
and H. C. Almeida, “Identifying thresholds for object-oriented software
metrics,” J. Syst. Softw., vol. 85, no. 2, pp. 244–257, Feb. 2012.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2011.05.044

[7] S. Conversy, “Unifying textual and visual: A theoretical account of the
visual perception of programming languages,” in Proceedings of the
2014 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software, ser. Onward! 2014.
New York, NY, USA: ACM, 2014, pp. 201–212. [Online]. Available:
http://doi.acm.org/10.1145/2661136.2661138

[8] G. Sussman, H. Abelson, and J. Sussman, “Structure and interpretation
of computer programs,” 1983.

[9] M. Fowler, K. Beck, J. Brant, and W. Opdyke, “Refactoring: Improving
the design of existing code.”

[10] “Scratch project forum discussion,” http://scratched.gse.harvard.
edu/discussions/computer-science-education/what-are-worst-scratch-
programming-practices, accessed:2015-07-20.

[11] M. Gordon, A. Marron, and O. Meerbaum-Salant, “Spaghetti for
the main course?: Observations on the naturalness of scenario-based
programming,” in Proceedings of the 17th ACM Annual Conference
on Innovation and Technology in Computer Science Education, ser.
ITiCSE ’12. New York, NY, USA: ACM, 2012, pp. 198–203. [Online].
Available: http://doi.acm.org/10.1145/2325296.2325346

[12] T. Mens and T. Tourwe, “A survey of software refactoring,” IEEE
Transactions on Software Engineering, vol. 30, no. 2, pp. 126–139,
Feb. 2004. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=1265817


