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Why Should You Care? 
• Tuesday’s lab in on Pebble Development 
• You have a homework on Pebble Development 

• Must include a Pebble Watch App and Android Companion App 

• Wearables seen as the next big frontier in mobile development 
• People buy these things ($$$) 

 



Types of Apps 
• Pebble Watchface 

• Presents information such as the time, weather, and date 
• Involves minimal user interaction 

• Pebble WatchApp 
• App for the Pebble involving some calculation based on user input 

• Pebble Companion App paired with WatchApp 
• Pebble WatchApp that communicates with a smart device 

• Developer Console Scripting Apps 
• WatchApp, so customizable has its own scripting language 

• All development for Pebble watches is in C (yay!) 
• Except for a little bit of optional Javascript  



Application Elements 
• Pebble apps are event driven 
• Developers must setup callback functions to be executed on user events 
• Every main function has the same basic structure  
    int main() { 
 
        init(); 
 
        app_event_loop(); 
 
        deinit(); 
    } 
• init() will contain all the program setup, callbacks, UI elements etc 
• deinit() will “tear down” things setup in init(), don’t leave anything out 
• app_event_loop(), infinite loop, allows events to be picked up by listeners 
 



Pebble API in General 
• All the structs are typedef-ed 

• Instead of struct Window, we can just type Window (phew) 
• Functions relating to certain structs are prefixed with 

the struct name 
• Ex. window_set_window_handlers deals with Window structs 
• Ex2. layer_add_child(…) deals with layer structs 
• Ex3. menu_cell_basic_draw(…) deals with MenuLayer 

structs 



Pebble API in General 
• The Pebble API is object oriented 

• What? In C? 

• Functions are bound to structs 
• Structs have fields storing function pointers in the structs 

• Structs of the same variety (i.e. Layer, MenuLayer, 
TextLayer) contain instances of their “parents” 
• Access these fields by calling function (a getter, if you will) 
• i.e. Layer *layer = menu_layer_get_layer(menu_layer); 



Pebble API in General 
• Explicit dynamic memory allocation is discouraged 

• Pebble has very limited memory  
• i.e. calls to malloc and calloc 
• To allocate and free dynamic memory, Pebble API calls 

should be used 
• i.e. window_create_window, window_destroy_window, 

 layer_create_layer, menu_layer_create_layer 
• Pointers…pointers everywhere….. 



Function Pointer Example 
• typedef void (* WindowHandler)(struct Window *window) 

• Declares function with void return value that take struct Window to be 
referenced by WindowHandler type 

Ex. 
void my_function() { 
 //stuff 
} 
int my_function2(struct Window *window) { 
 //better stuff 
} 
void my_function3 (struct Window *window) { 
 //best stuff 
} 
WindowHandler *handler = my_function;  
WindowHandler *handler2 = my_function2;  
WindowHandler *handler3 = my_function3;  
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 //better stuff 
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Function Pointer Example 
• typedef void (* WindowHandler)(struct Window *window) 

• Declares function with void return value that take struct Window to be 
referenced by WindowHandler type 

Ex. 
void my_function() { 
 //stuff 
} 
int my_function2(struct Window *window) { 
 //better stuff 
} 
void my_function3 (struct Window *window) { 
 //best stuff 
} 
WindowHandler *handler = my_function; //DOESN’T WORK 
WindowHandler *handler2 = my_function2; //DOESN’T WORK 
WindowHandler *handler3 = my_function3; //SUCCESS! 



A Pebble Function Pointer Example 
static Window *window; 
 
void window_load() { 
 //do stuff to setup window like set layers 
} 
void window_unload() { 
 //destroy elements of the window 
} 
void init() { 
 window = create_window(); 
 WindowHandlers winHandle; 
 
 winHandle.load = window_load; 
 winHandle.unload = window_unload; 
 
 window_set_window_handlers(window, winHandle); 
 window_stack_push(window); 
} 



Visual Elements 
• Window 

• Fundamental UI element of all pebble apps 
• Analogous to an xml layout file in Android 
• Pushed and popped onto window stack for visibility 
• One, and only one, must be displayed at all times  

• Except when animating transitions between windows 
• Handle all user input (button clicks) by using callback functions 

• These callback functions can only be set once per Window 

 



Essential Window Functions 
• Window* window_create() 

• Create new window, return a pointer to it 
 

• void window_set_click_config_provider(Window, ClickConfigProvider) 
• Set a function with the signature void <function_name> (void 

*context) to run every time the window is brought into focus 
• Function passed must setup all button click handlers  

• i.e. the window_single_click_subscribe function below 
 

• void window_single_click_subscribe(ButtonId, ClickHandler) 
• Set callback function for a single button click specified by button_id 
• i.e. BUTTON_ID_SELECT 



Window Actions Setup Example 
static Window *window; 
 
static void select_handler(ClickRecognizerRef recognizer, void *context) { 
    //Action to execute when select is clicked 
} 
static void up_handler(ClickRecognizerRef recognizer, void *context) { 
    //Action to execute when up is clicked 
} 
static void down_handler(ClickRecognizerRef recognizer, void *context) { 
    //Action to execute when down is clicked 
} 
static void click_config_provider(void *context) { 
    window_single_click_subscribe(BUTTON_ID_SELECT, select_handler); 
    window_single_click_subscribe(BUTTON_ID_UP, up_handler); 
    window_single_click_subscribe(BUTTON_ID_DOWN, down_handler); 
} 
 
static void window_load(Window *window) { 
    window_set_click_config_provider(window, click_config_provider); 
} 
 
int main () {    
    init(); 
    app_event_loop(); 
    deinit(); 
} 



Visual Elements 
• Window Stack 

• Hold all currently, previously displayed windows (unless explicitly 
removed) 

• Top of stack is the currently displayed window 
• Simple push/pop operations to change out windows 
• Can remove windows by index from the stack (but not add) 



Essential Window Stack Functions 
• void window_stack_push(Window *window, bool animated) 

• Pushes passed in window onto top of window stack, making it 
visible 

• Window* window_stack_pop(bool animated) 
• Pops the currently visible window off the window stack 

•  bool window_stack_remove(Window *window, bool animated) 
• Removes passed in window from stack, returns false on failure 
• NOTE: There is no corresponding add function 



Visual Elements 
• Layers 

• Display text, images, other layers 
• Many types 

• MenuLayer, ActionBarLayer, TextLayer, BitmapLayer, MenuBarLayer and 
more…. 

• Every Layer type (TextLayer, MenuLayer etc) contains a base Layer 
object that provides the same fundamental operations 

• Store information about state necessary to draw or redraw the object that it 
represents 

 



Layer Details 
• Pass a GRect struct  to layer_create, must define what space the 

layer will occupy 
• GRect has two fields, origin, and size 
 

• origin: specifies where the layer starts, is GPoint struct with two int fields (x, y) 
• NOTE: The origin of the pebble is at the top left corner of the screen 
 

• size: specifies size of rectangle and is GSize struct with two int fields (h and w) 
(height and width) 



Layer Details 
• Layers can store data, i.e a callback function, by calling 

layer_create_with_data and passing size of data region 
• Data is set by calling layer_get_data(const Layer *layer)  

• Return void* type pointing to data and manipulating data at address 

 



Layer Details 
• Every Layer (MenuLayer, TextLayer, BitmapLayer) contains a 

field of plain old Layer type 
• Provides useful properties of polymorphism 
•  Allows passing around Layer reference contained in MenuLayer to a 

function that only accepts the Layer type 

 



Essential Layer Functions 
• Layer* layer_create(GRect frame) 

• Create a layer, size determined by GRect struct 

• void layer_destroy(Layer *layer) 
• Destroy the layer 

• GRect layer_get_frame(const Layer *layer) 
• Gets the bounds of the frame in the form of a GRect struct 

• struct Window* layer_get_window(const Layer *layer) 
• Get Window struct layer is in or NULL if layer not bound to window 

• void layer_add_child(Layer *parent, Layer *child) 
• Set child layer inside parent layer 
• Probably the most used layer function…. 



Text Layer 
• Simple layer that provides functions to write and erase text 
• Can set text color, font, background color, text alignment… 
• Simplest Layer 

 



Menu Layer 
• Layer which defines a familiar menu layout 

• Each cell can have its data altered 

• Heavy to setup, minimum of about 5 callback functions 
• Little interaction required afterwards (unless you’re doing 

something tricky) 
 



Bitmap Layer 
• Used to display a picture 
• Good for icons and simple figures, no HD pictures… 
 



Action Bar Layer 
• A layer which provides a vertical row of buttons on the right 

side of the window 
• See the default music player app on the Pebble for an example 

• Can contain up to 3 customizable icons (i.e. next, prev, play) 
• Icons can be swapped out in real-time 
• ActionBarLayer is bound to the window directly  

• No intermediary layer 
• All click handlers are automatically setup on binding 
• Additional Layers may cover up the ActionBar 

 



Persistence on the Pebble 
• Storage space is identified by the (hopefully) unique app UUID 
• Values are all stored in key, value pairs 

• Keys are uint32_t values 
• Values are integers, c-strings (char *), and byte arrays 
• structs can be saved as byte arrays too! 

• Maximum storage space for any single app is 256 bytes 
• Calls to Persistence API are slow 

• best used in the init() and deinit() functions 



Persistence Function Calls 
• Writing 

• persist_write_bool(BOOL_KEY_VALUE, true/false); 
• persist_write_int(INT_KEY_VALUE, 42); 
• persist_write_string(STRING_KEY_VALUE, “Douglas”); 
• uint8_t bytes[42]; 

persist_write_data(BYTES_KEY_VALUE, bytes, sizeof(bytes)); 
• Reading 

• bool truth = persist_read_bool(BOOL_KEY_VALUE); 
• char username[20] 

persist_read_string(STRING_KEY_VALUE); 
• uint8_t bytes[42]; 

persist_read_data(BYTES_KEY_VALUE, bytes, sizeof(bytes)); 
• Existence 

• bool exists = persist_exists(QUESTIONABLE_KEY); 



Pebble Device Communication 
• Communication can be initiated from device or the Pebble 
• Phone companion app must have the unique UUID of the app to 

communicate with it 
• All data must be sent as a dictionary, in key-value pairs 
• Two packages to use for communication: 

• AppMessage 
• AppSync 

• Additional data structures provided on both Pebble and Android 
• PebbleDictionary 
• Tuple 
• Tuplet 

 



Pebble Communication with AppMessage 
• Allows high level of control over each individual message 
• Must implement at most 4 callback functions 
• Sending 

• Write values to Dictionary and call  
“app_message_outbox_send()” 

• Receiving 
• void in_received_handler(DictionaryIterator *iter, void *context) 

• In body check for fields you are expecting to receive with: 
• dict_find(DictionaryIterator *iter, int id) 

 
• Older firmware (1.1) doesn’t support AppMessage 

 



Android Communication with AppMessage 
• Import PEBBLE_KIT project in to Eclipse and add to Build 

Path of Android apps 
• Receiving Messages  

• registerReceivedDataHandler 
• One function to implement: 

• void receiveData(final Context, final int transactionId, final PebbleDictionary) 
• Must acknowledge receipt of message (or NACK it) 

• PebbleKit.sendAckToPebble(final Context context, final int transactionId); 

• Sending Messages 
• sendDataToPebble(final Context, final UUID, final PebbleDictionary) 

• Status Updates 
• Listen for watch connected event 
• Listen for ACK/NACK messages from the Pebble 



Pebble Communication with AppMessage 



Pebble Communication with AppSync 
• Built on top of AppMessage 
• Maintains and updates a single Dictionary 
• Has built-in listeners to automatically update UI elements when 

the Dictionary changes 
• Good for applications involving many updates 

• No user-incurred synchronization costs 

• Setup one callback, call a setup function, done! 



Pebble Communication with AppSync 
• Setup sync listeners and callbacks 
• app_sync_init(  
 struct AppSync *s,  
 uint8_t *buffer,  
 const uint16_t buffer_size,  
 const Tuplet *const keys_and_initial_values,  
 const uint8_t count,  
 AppSyncTupleChangedCallback tuple_changed_callback, 
 AppSyncErrorCallback error_callback,  
 void *context) 
• Sync_tuple_changed_callback( 

 const uint32_t key,  
 const Tuple *new_tuple,  
 const Tuple *old_tuple,  
 void *context) 



Android Communication with AppSync 
• Exactly the same as AppMessage 



Pebble Communication with AppSync 



Javascript Aided Communication 
• Platform independent way to communicate with Pebble 
• Interface to make HTTP requests 

• Turns phone into a server where your Pebble is the client 

• Interface from phone to Pebble using “Pebble” Javascript object 
• Interface with the web using Javascript function calls 

• Part of W3C standard 

• Data sent in Key-Value pairs 
• Follow JSON specification 

• To make a Pebble app using Javascript 
• Create new project with command: 

pebble new-project --javascript my_js_project  
  

 



Pebble Accelerometer 
• Very sensitive 

• Sensitive enough to detects taps on the phone 

• Measured in milli-Gs 
• Has a range of -4000 to 4000 

• Watch vibrations affect accelerometer readings 
• Grabs struct with x, y, z, bool did_vibrate indicating whether 

vibration occurred while grabbing values and timestamp in 
milliseconds 



Pebble Accelerometer Axes 



Using the Pebble Accelerometer  
• Three main ways to utilize accelerometer 

• Register for shake or tap events 
• Predefined standards for taps and shakes 

• Process data in batch jobs to analyze for patterns 
• Can automatically poll for data at predefined intervals 

• Real time data usage 

• Easy to subscribe to services for all three 



JSON Configuration File 
• JSON file in root directory of project (settings on CloudPebble) 
• Includes various values, most are pre-generated 

• App Kind (watch app, watch face, companion app) 
• Long Name 
• Short Name 
• Menu Image 
• Version Code 
• Version Label 
• App UUID 

• Also define Javascript Message Keys (if desired) 



Pebble Development Setup 
• Must be running Ubuntu (other Linux distros won’t work out of 

box) 
• Download SDK and follow the instructions: 

• https://developer.getpebble.com/2/getting-started/linux/ 

• There may also be some Python dependencies that are necessary 
to download using apt-get 

• All project activities (create, build, install, etc) are issued using 
the “pebble” terminal utility 

• To test that you have configured this correctly run: 
 pebble new-project hello_world 

https://developer.getpebble.com/2/getting-started/linux/


Pebble Development 
• Create a new project: 

• pebble new-project <project-name> 
• Build project code: 

• pebble build (run inside the project directory) 
• Install to Pebble watch: 

• Connect phone and computer to the same Wi-Fi 
• Get IP Address from Pebble watch companion app 
• pebble install --phone <ip-address of phone>  

• Debug code running on Pebble: 
• To print debug messages add calls to the function below to your code 

 void app_log(uint8_t log_level, const char *src_filename, int    
       src_line_number, const char *fmt, …) 

• pebble debug --phone <ip-address of phone> 
• This will stream print statements initiated by app_log to the terminal 

 



Uploading to the Pebble App Store 
• Create various graphics to include with your app 

• To upload your Pebble app to the market you need a minimal of 4 
graphics for: 
• Large Icon 
• Small Icon 
• Screenshots (at least one) 
• Header Image (at least one) 



Things to Keep in Mind 
• Memory is valuable, free it as soon as possible, and avoid 

unnecessary global variables  
• Although many global variables are necessary 

• Memory is NOT managed, you must match every _create() 
function call with a _destroy() function call 

• The interface to the Pebble is very limited…try to come up with 
novel ways to input data easily 
 



Downsides 
• Back button cannot yet be overridden 
• Feature set still young, 2.0 SDK added persistence, 

accelerometer access, magnetometer and many other features 
• Closed-source 
• Not much memory 

 



Need References? 
• The online Pebble API is fantastic 

• https://developer.getpebble.com/2/api-reference/modules.html 

• When you run pebble new-project <project_name> you get the 
default hello world Pebble app 

• Inside the Pebble SDK folder is a folder named  Examples 
which demonstrates most of the functionality of the Pebble 
watch 

• PebbleCloud has several example projects you can select from 
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