
PEBBLE DEVELOPMENT
Ethan Gaebel
Virginia Tech

Why Should You Care?
• Tuesday’s lab in on Pebble Development
• You have a homework on Pebble Development

• Must include a Pebble Watch App and Android Companion App

• Wearables seen as the next big frontier in mobile development
• People buy these things ($$$)

Types of Apps
• Pebble Watchface

• Presents information such as the time, weather, and date
• Involves minimal user interaction

• Pebble WatchApp
• App for the Pebble involving some calculation based on user input

• Pebble Companion App paired with WatchApp
• Pebble WatchApp that communicates with a smart device

• Developer Console Scripting Apps
• WatchApp, so customizable has its own scripting language

• All development for Pebble watches is in C (yay!)
• Except for a little bit of optional Javascript

Application Elements
• Pebble apps are event driven
• Developers must setup callback functions to be executed on user events
• Every main function has the same basic structure
 int main() {

 init();

 app_event_loop();

 deinit();
 }
• init() will contain all the program setup, callbacks, UI elements etc
• deinit() will “tear down” things setup in init(), don’t leave anything out
• app_event_loop(), infinite loop, allows events to be picked up by listeners

Pebble API in General
• All the structs are typedef-ed

• Instead of struct Window, we can just type Window (phew)
• Functions relating to certain structs are prefixed with

the struct name
• Ex. window_set_window_handlers deals with Window structs
• Ex2. layer_add_child(…) deals with layer structs
• Ex3. menu_cell_basic_draw(…) deals with MenuLayer

structs

Pebble API in General
• The Pebble API is object oriented

• What? In C?

• Functions are bound to structs
• Structs have fields storing function pointers in the structs

• Structs of the same variety (i.e. Layer, MenuLayer,
TextLayer) contain instances of their “parents”
• Access these fields by calling function (a getter, if you will)
• i.e. Layer *layer = menu_layer_get_layer(menu_layer);

Pebble API in General
• Explicit dynamic memory allocation is discouraged

• Pebble has very limited memory
• i.e. calls to malloc and calloc
• To allocate and free dynamic memory, Pebble API calls

should be used
• i.e. window_create_window, window_destroy_window,

 layer_create_layer, menu_layer_create_layer
• Pointers…pointers everywhere…..

Function Pointer Example
• typedef void (* WindowHandler)(struct Window *window)

• Declares function with void return value that take struct Window to be
referenced by WindowHandler type

Ex.
void my_function() {
 //stuff
}
int my_function2(struct Window *window) {
 //better stuff
}
void my_function3 (struct Window *window) {
 //best stuff
}
WindowHandler *handler = my_function;
WindowHandler *handler2 = my_function2;
WindowHandler *handler3 = my_function3;

Function Pointer Example
• typedef void (* WindowHandler)(struct Window *window)

• Declares function with void return value that take struct Window to be
referenced by WindowHandler type

Ex.
void my_function() {
 //stuff
}
int my_function2(struct Window *window) {
 //better stuff
}
void my_function3 (struct Window *window) {
 //best stuff
}
WindowHandler *handler = my_function; //DOESN’T WORK
WindowHandler *handler2 = my_function2;
WindowHandler *handler3 = my_function3;

Function Pointer Example
• typedef void (* WindowHandler)(struct Window *window)

• Declares function with void return value that take struct Window to be
referenced by WindowHandler type

Ex.
void my_function() {
 //stuff
}
int my_function2(struct Window *window) {
 //better stuff
}
void my_function3 (struct Window *window) {
 //best stuff
}
WindowHandler *handler = my_function; //DOESN’T WORK
WindowHandler *handler2 = my_function2; //DOESN’T WORK
WindowHandler *handler3 = my_function3;

Function Pointer Example
• typedef void (* WindowHandler)(struct Window *window)

• Declares function with void return value that take struct Window to be
referenced by WindowHandler type

Ex.
void my_function() {
 //stuff
}
int my_function2(struct Window *window) {
 //better stuff
}
void my_function3 (struct Window *window) {
 //best stuff
}
WindowHandler *handler = my_function; //DOESN’T WORK
WindowHandler *handler2 = my_function2; //DOESN’T WORK
WindowHandler *handler3 = my_function3; //SUCCESS!

A Pebble Function Pointer Example
static Window *window;

void window_load() {
 //do stuff to setup window like set layers
}
void window_unload() {
 //destroy elements of the window
}
void init() {
 window = create_window();
 WindowHandlers winHandle;

 winHandle.load = window_load;
 winHandle.unload = window_unload;

 window_set_window_handlers(window, winHandle);
 window_stack_push(window);
}

Visual Elements
• Window

• Fundamental UI element of all pebble apps
• Analogous to an xml layout file in Android
• Pushed and popped onto window stack for visibility
• One, and only one, must be displayed at all times

• Except when animating transitions between windows
• Handle all user input (button clicks) by using callback functions

• These callback functions can only be set once per Window

Essential Window Functions
• Window* window_create()

• Create new window, return a pointer to it

• void window_set_click_config_provider(Window, ClickConfigProvider)
• Set a function with the signature void <function_name> (void

*context) to run every time the window is brought into focus
• Function passed must setup all button click handlers

• i.e. the window_single_click_subscribe function below

• void window_single_click_subscribe(ButtonId, ClickHandler)
• Set callback function for a single button click specified by button_id
• i.e. BUTTON_ID_SELECT

Window Actions Setup Example
static Window *window;

static void select_handler(ClickRecognizerRef recognizer, void *context) {
 //Action to execute when select is clicked
}
static void up_handler(ClickRecognizerRef recognizer, void *context) {
 //Action to execute when up is clicked
}
static void down_handler(ClickRecognizerRef recognizer, void *context) {
 //Action to execute when down is clicked
}
static void click_config_provider(void *context) {
 window_single_click_subscribe(BUTTON_ID_SELECT, select_handler);
 window_single_click_subscribe(BUTTON_ID_UP, up_handler);
 window_single_click_subscribe(BUTTON_ID_DOWN, down_handler);
}

static void window_load(Window *window) {
 window_set_click_config_provider(window, click_config_provider);
}

int main () {
 init();
 app_event_loop();
 deinit();
}

Visual Elements
• Window Stack

• Hold all currently, previously displayed windows (unless explicitly
removed)

• Top of stack is the currently displayed window
• Simple push/pop operations to change out windows
• Can remove windows by index from the stack (but not add)

Essential Window Stack Functions
• void window_stack_push(Window *window, bool animated)

• Pushes passed in window onto top of window stack, making it
visible

• Window* window_stack_pop(bool animated)
• Pops the currently visible window off the window stack

• bool window_stack_remove(Window *window, bool animated)
• Removes passed in window from stack, returns false on failure
• NOTE: There is no corresponding add function

Visual Elements
• Layers

• Display text, images, other layers
• Many types

• MenuLayer, ActionBarLayer, TextLayer, BitmapLayer, MenuBarLayer and
more….

• Every Layer type (TextLayer, MenuLayer etc) contains a base Layer
object that provides the same fundamental operations

• Store information about state necessary to draw or redraw the object that it
represents

Layer Details
• Pass a GRect struct to layer_create, must define what space the

layer will occupy
• GRect has two fields, origin, and size

• origin: specifies where the layer starts, is GPoint struct with two int fields (x, y)
• NOTE: The origin of the pebble is at the top left corner of the screen

• size: specifies size of rectangle and is GSize struct with two int fields (h and w)
(height and width)

Layer Details
• Layers can store data, i.e a callback function, by calling

layer_create_with_data and passing size of data region
• Data is set by calling layer_get_data(const Layer *layer)

• Return void* type pointing to data and manipulating data at address

Layer Details
• Every Layer (MenuLayer, TextLayer, BitmapLayer) contains a

field of plain old Layer type
• Provides useful properties of polymorphism
• Allows passing around Layer reference contained in MenuLayer to a

function that only accepts the Layer type

Essential Layer Functions
• Layer* layer_create(GRect frame)

• Create a layer, size determined by GRect struct

• void layer_destroy(Layer *layer)
• Destroy the layer

• GRect layer_get_frame(const Layer *layer)
• Gets the bounds of the frame in the form of a GRect struct

• struct Window* layer_get_window(const Layer *layer)
• Get Window struct layer is in or NULL if layer not bound to window

• void layer_add_child(Layer *parent, Layer *child)
• Set child layer inside parent layer
• Probably the most used layer function….

Text Layer
• Simple layer that provides functions to write and erase text
• Can set text color, font, background color, text alignment…
• Simplest Layer

Menu Layer
• Layer which defines a familiar menu layout

• Each cell can have its data altered

• Heavy to setup, minimum of about 5 callback functions
• Little interaction required afterwards (unless you’re doing

something tricky)

Bitmap Layer
• Used to display a picture
• Good for icons and simple figures, no HD pictures…

Action Bar Layer
• A layer which provides a vertical row of buttons on the right

side of the window
• See the default music player app on the Pebble for an example

• Can contain up to 3 customizable icons (i.e. next, prev, play)
• Icons can be swapped out in real-time
• ActionBarLayer is bound to the window directly

• No intermediary layer
• All click handlers are automatically setup on binding
• Additional Layers may cover up the ActionBar

Persistence on the Pebble
• Storage space is identified by the (hopefully) unique app UUID
• Values are all stored in key, value pairs

• Keys are uint32_t values
• Values are integers, c-strings (char *), and byte arrays
• structs can be saved as byte arrays too!

• Maximum storage space for any single app is 256 bytes
• Calls to Persistence API are slow

• best used in the init() and deinit() functions

Persistence Function Calls
• Writing

• persist_write_bool(BOOL_KEY_VALUE, true/false);
• persist_write_int(INT_KEY_VALUE, 42);
• persist_write_string(STRING_KEY_VALUE, “Douglas”);
• uint8_t bytes[42];

persist_write_data(BYTES_KEY_VALUE, bytes, sizeof(bytes));
• Reading

• bool truth = persist_read_bool(BOOL_KEY_VALUE);
• char username[20]

persist_read_string(STRING_KEY_VALUE);
• uint8_t bytes[42];

persist_read_data(BYTES_KEY_VALUE, bytes, sizeof(bytes));
• Existence

• bool exists = persist_exists(QUESTIONABLE_KEY);

Pebble Device Communication
• Communication can be initiated from device or the Pebble
• Phone companion app must have the unique UUID of the app to

communicate with it
• All data must be sent as a dictionary, in key-value pairs
• Two packages to use for communication:

• AppMessage
• AppSync

• Additional data structures provided on both Pebble and Android
• PebbleDictionary
• Tuple
• Tuplet

Pebble Communication with AppMessage
• Allows high level of control over each individual message
• Must implement at most 4 callback functions
• Sending

• Write values to Dictionary and call
“app_message_outbox_send()”

• Receiving
• void in_received_handler(DictionaryIterator *iter, void *context)

• In body check for fields you are expecting to receive with:
• dict_find(DictionaryIterator *iter, int id)

• Older firmware (1.1) doesn’t support AppMessage

Android Communication with AppMessage
• Import PEBBLE_KIT project in to Eclipse and add to Build

Path of Android apps
• Receiving Messages

• registerReceivedDataHandler
• One function to implement:

• void receiveData(final Context, final int transactionId, final PebbleDictionary)
• Must acknowledge receipt of message (or NACK it)

• PebbleKit.sendAckToPebble(final Context context, final int transactionId);

• Sending Messages
• sendDataToPebble(final Context, final UUID, final PebbleDictionary)

• Status Updates
• Listen for watch connected event
• Listen for ACK/NACK messages from the Pebble

Pebble Communication with AppMessage

Pebble Communication with AppSync
• Built on top of AppMessage
• Maintains and updates a single Dictionary
• Has built-in listeners to automatically update UI elements when

the Dictionary changes
• Good for applications involving many updates

• No user-incurred synchronization costs

• Setup one callback, call a setup function, done!

Pebble Communication with AppSync
• Setup sync listeners and callbacks
• app_sync_init(
 struct AppSync *s,
 uint8_t *buffer,
 const uint16_t buffer_size,
 const Tuplet *const keys_and_initial_values,
 const uint8_t count,
 AppSyncTupleChangedCallback tuple_changed_callback,
 AppSyncErrorCallback error_callback,
 void *context)
• Sync_tuple_changed_callback(

 const uint32_t key,
 const Tuple *new_tuple,
 const Tuple *old_tuple,
 void *context)

Android Communication with AppSync
• Exactly the same as AppMessage

Pebble Communication with AppSync

Javascript Aided Communication
• Platform independent way to communicate with Pebble
• Interface to make HTTP requests

• Turns phone into a server where your Pebble is the client

• Interface from phone to Pebble using “Pebble” Javascript object
• Interface with the web using Javascript function calls

• Part of W3C standard

• Data sent in Key-Value pairs
• Follow JSON specification

• To make a Pebble app using Javascript
• Create new project with command:

pebble new-project --javascript my_js_project

Pebble Accelerometer
• Very sensitive

• Sensitive enough to detects taps on the phone

• Measured in milli-Gs
• Has a range of -4000 to 4000

• Watch vibrations affect accelerometer readings
• Grabs struct with x, y, z, bool did_vibrate indicating whether

vibration occurred while grabbing values and timestamp in
milliseconds

Pebble Accelerometer Axes

Using the Pebble Accelerometer
• Three main ways to utilize accelerometer

• Register for shake or tap events
• Predefined standards for taps and shakes

• Process data in batch jobs to analyze for patterns
• Can automatically poll for data at predefined intervals

• Real time data usage

• Easy to subscribe to services for all three

JSON Configuration File
• JSON file in root directory of project (settings on CloudPebble)
• Includes various values, most are pre-generated

• App Kind (watch app, watch face, companion app)
• Long Name
• Short Name
• Menu Image
• Version Code
• Version Label
• App UUID

• Also define Javascript Message Keys (if desired)

Pebble Development Setup
• Must be running Ubuntu (other Linux distros won’t work out of

box)
• Download SDK and follow the instructions:

• https://developer.getpebble.com/2/getting-started/linux/

• There may also be some Python dependencies that are necessary
to download using apt-get

• All project activities (create, build, install, etc) are issued using
the “pebble” terminal utility

• To test that you have configured this correctly run:
 pebble new-project hello_world

https://developer.getpebble.com/2/getting-started/linux/

Pebble Development
• Create a new project:

• pebble new-project <project-name>
• Build project code:

• pebble build (run inside the project directory)
• Install to Pebble watch:

• Connect phone and computer to the same Wi-Fi
• Get IP Address from Pebble watch companion app
• pebble install --phone <ip-address of phone>

• Debug code running on Pebble:
• To print debug messages add calls to the function below to your code

 void app_log(uint8_t log_level, const char *src_filename, int
 src_line_number, const char *fmt, …)

• pebble debug --phone <ip-address of phone>
• This will stream print statements initiated by app_log to the terminal

Uploading to the Pebble App Store
• Create various graphics to include with your app

• To upload your Pebble app to the market you need a minimal of 4
graphics for:
• Large Icon
• Small Icon
• Screenshots (at least one)
• Header Image (at least one)

Things to Keep in Mind
• Memory is valuable, free it as soon as possible, and avoid

unnecessary global variables
• Although many global variables are necessary

• Memory is NOT managed, you must match every _create()
function call with a _destroy() function call

• The interface to the Pebble is very limited…try to come up with
novel ways to input data easily

Downsides
• Back button cannot yet be overridden
• Feature set still young, 2.0 SDK added persistence,

accelerometer access, magnetometer and many other features
• Closed-source
• Not much memory

Need References?
• The online Pebble API is fantastic

• https://developer.getpebble.com/2/api-reference/modules.html

• When you run pebble new-project <project_name> you get the
default hello world Pebble app

• Inside the Pebble SDK folder is a folder named Examples
which demonstrates most of the functionality of the Pebble
watch

• PebbleCloud has several example projects you can select from

	Pebble Development
	Why Should You Care?
	Types of Apps
	Application Elements
	Pebble API in General
	Pebble API in General
	Pebble API in General
	Function Pointer Example
	Function Pointer Example
	Function Pointer Example
	Function Pointer Example
	A Pebble Function Pointer Example
	Visual Elements
	Essential Window Functions
	Window Actions Setup Example
	Visual Elements
	Essential Window Stack Functions
	Visual Elements
	Layer Details
	Layer Details
	Layer Details
	Essential Layer Functions
	Text Layer
	Menu Layer
	Bitmap Layer
	Action Bar Layer
	Persistence on the Pebble
	Persistence Function Calls
	Pebble Device Communication
	Pebble Communication with AppMessage
	Android Communication with AppMessage
	Pebble Communication with AppMessage
	Pebble Communication with AppSync
	Pebble Communication with AppSync
	Android Communication with AppSync
	Pebble Communication with AppSync
	Javascript Aided Communication
	Pebble Accelerometer
	Pebble Accelerometer Axes
	Using the Pebble Accelerometer
	JSON Configuration File
	Pebble Development Setup
	Pebble Development
	Uploading to the Pebble App Store
	Things to Keep in Mind
	Downsides
	Need References?

