James Larus
Microsoft Research
ISSTA, July 22, 2008

THE REAL VALUE OF TESTING

(OR, WHAT I°VE LEARNED IN THE PAST DECADE)

If Only We knew Listened..

"The real value of tests is not that they detect
bugs in the code but that they detect
inadequacies in the methods, concentration,
and skills of those who design and produce
the code.

= Tony Hoare, How did software get so reliable
without proof?, FME ‘96

A Bit of History

= | went to MSR on sabbatical, summer 1997
» Decided to stay, spring 1998

= Started SPT — Software Productivity Tools

= Amitabh Srivastava joined to start PPRC -
Programmer Productivity Research Center

= Yuri Gurevich joined to start FSE — Foundations of
Software Engineering

Why Fervor Around SWE?

= Microsoft struggling to
ship Windows 2000
= Company growing
rapidly
= Software growing
rapidly
= Software development
not evolving

90,000

80,000 -

70,000
60,000
50,000
40,000
30,000
20,000

10,000

Microsoft

—Employees

/

e N Revenuy

60

5o

40

30

20

- 10

Growth 1n Software Size

1000

100

10

Windows LoC

== SPECINT

Moore's Law

Win3.1 Win g5 NT 4.0 Win 98 Win XP Win 2003 Server Vista

Cultural Challenges

= Small company

development culture

under stress

= “"Why is only 25% of my
time spent writing new
code?” — Developer
Productivity Offsite, 1999

= “Stop the bugs!” —ibid.

= “Do we focus on wrong
things during
development?” — ibid.

= “Why do we write so much
code during integration?’ —

http://images.bestwebbuys.com/muze/books/12/9781556155512.jpg

| SPT, c. 1998

-y,

.. TomBall
: ‘ Manuvir Das
— | Manuel Fahndrich
“eene Jim Larus
| Sriram Rajamani

Jakob Rehof

Projects

Formal methods

Static

PL Design

Parallel & Distributed Tools
Collaborative Programming Tools

¢ Jim Larus ¢ Microsoft Research e

PPRC, c. 1999

¢ Jim Larus ¢ Microsoft Research e

We believe the
answer lies in good
tools and processes.
Good tools enable
process changes and
allow a large number
of developers and
testers to effectively
work together.

Why Emphasis on Defects & A
Tools?
Q

= Defect detection % o
= Bugs seen as biggest problem in SW development
= Enormous effort spent stabilize products (fixing bugs)
= Developersin denial about need for change
= “Best in the world”
= Only saw manifestations (bugs) of deeper problems
= Most tolerated tools

€

= “Productivity” improvement left developers in control
= Process change too radical
- (Especially from pointy headed academics in MSR)

Prefix

= MS purchased Intrinsa and moved Jon Pincus and
company into PPRC

= Prefix was ad-hoc, but extremely scalable, defect
detection tool
= Interprocedural analysis across 10’s millions of LoC
* Found “usage” bugs
= Null pointer, double free
= |gnored error codes, style issues
= Batch process

= Weekly run produced 10k’s bugs
= High false positive rate

Prefast

= Realization of earlier work by Daniel Weise
(ASTToolkit)

= Front-end of C++ compiler with clean AST

= Plug-ins traverse AST, looking for specific patterns
* Structural “grep”

* Enormously popular
= Desktop checking (fast & private)
= Easy to customize for specific problem
= Foundation for sophisticated tools
= Full C++ parser integrated in MS build process

= Shipped in Visual Studio

ESP

= Manuvir Das’s effort to put Prefix on solid
analytic foundation

= Scalable, flow-sensitive program analysis
= Techniques were publishable research
= Enormous effort to turn into a useful tool
° Engineering
= “Good enough” competitors
= Global analysis is expensive
o C++is messy
= Paid off for security push
~ Could demonstrate the absence of bu

SLAM

= Tom Ball & Sriram Rajamani
= Major research innovation

= Software model checking

= Counter-example driven refinement

= Embodied in Static Driver Verifier (SDV)

= Checks library of intricate rules for device drivers
= Shipped 5 years after start of work
= Many happy third party driver writers

| Spec Explorer

= Wolfram Schulte & FSE team
= Model-driven testing tool

= Innovative research
= Enormous amount of engineering

= Little acceptance

= Specification is a foreign concept to most
= Testers most enthusiastic, but least skilled

= Did not fit development process at MS

SLAMMER

= An OMG moment for MS

= Stopped all development for 2-2 months for
security training

= Inspected all software
= Threat modeling became part of development
= PPRC moved into Windows

- Defect detection tools focused on buffer overruns
* 4-5 years of effort culminating in Vista

Lessons of SLAMMER

= Tools can’t find or fix all fundamental flaws
= If you don't look for it, you will not find it

= Very hard to add quality to finished product
= Detroitin 1970's & 80's

= Education and process key to change
= Oh, people write software?

= Crisis can change direction of a big ship
= But, very painful way to steer

Watson

= Microsoft error el
reporting system
= Report errors from

user’'s machine to
Microsoft

* Not just MS software (7000
products)

@ 42% of computers
generate report
= Greatest improvement
in SW development

Hotfix

Lessons of Watson

Renos Malware

= Find errors in real time

* Prioritize effort by
customer benefit

= Heavily skewed
distributions

= No question of
Importance

Maximum benefit from
fixed budget

% of Error Reports

MSR Becomes HIP

= Rob DelLine started Human Interactions in
Programming (HIP)

= “We study programming, as if it was done by people”

= Different approach to software development

= People and organization (vs. code)
= New methodology

= Empirical research (survey, interview, observe)
* Tools address identified problems
- Rigorous user testing of tools

TeamTracks

= How do you find your way
around big/new code base?

Recommender system based
on what other people look at

* |Improved task completion
rates

Task 3 (localized code):
1 /7 without
3 /9 withTeam Tracks

Task 4 (dispersed code):
1 /7 without
7 /9 with Team Tracks
= Group 2 quiz scores 18%
higher

File Edit Vi Project Build Debug T

etrisGrid.cs

counter++;

currentFigure = new Line(this);
itFigure = new Triangle(this);
currentFigure

= new LThunder({this};

igure = new RThunder(this);

igure = new RightT(this);

inure™s naw | aftTthish:

Team Coordination Work

Cambridge, MA

'

Redmond, WA

Hyderabad,
India

! SPT — SRR

= Tom Ball took over SPT and redirected it

= Nachi Nagappan started empirical software
research
= Mine wealth of unexamined data
= Build predictive models to guide development

= Process change from the inside

- Show teams what is really happening, and they
adapt

Failure Prediction Models

= Early models based on conventional inputs

= Bugs found by Prefix/Prefast
= Code churn

= Complexity metrics

= More recent models are people focused
= Organizational metrics

* Enormously popular and in demand
= Sharp contrast to defect tools

Organizational Metrics Study

Organizational Structure

Code Churn
Code Complexity
Dependencies

Code Coverage

Pre-release Bugs

Prediction of Windows Vista binaries (3404) as failure-prone

(above lower confidence bound for all failures).

-- Nagappan, Murphy, Basili, “Influence of Organizational Structure on Software Quality,”
ICSE 2008.

e Jim Larus ® Microsoft Research e 24

Singularity

= Microsoft Research project
with goal of more robust and
reliable software

= James Larus & Galen Hunt
= Rethink the software stack
= Articulated architectural

Verification prlnC|pIes .
Tools = Software will fail, system should
not

o = System should be self-describing
= Verify many aspects as possible

= Nosingle magic bullet

= Mutually reinforcing
improvements to languages and

Improved OS
Architecture

Renewed Interest in Testing

= Can't statically analyze parallel programs
o Fundamental limitation (?)
= Systematic testing (Chess) is very effective

= Random and fuzz testing complement people
= Also to Black Hat community

= Combined static analysis and run-time
exploration offers advantages of both

= Concrete error traces (and no false positives)

Back to Tony Hoare

"The real value of tests is not that they detect
bugs in the code but that they detect
inadequacies in the methods, concentration,
and skills of those who design and produce
the code.

= Tony Hoare, How did software get so reliable
without proof?, FME ‘96

Improving Software

= My original view was simplistic
= (Not unproductive, however)
= Tools, by themselves, do not improve software
= People improve software
= Tools can reinforce process change
= Defect detection is inferior to defect prevention
= Starting with architecture
= |Improve organization
= Finally, improve practice
= Must understand people and organizations develop SW

= Communication and information discovery central
= Specifications not natural

Conclusion

= SW developmentistoo complexto be reduced
to a single problem or solution
= Analysis tools will not perfect software
= But, nor will thousands of eyeballs

= Balance the strengths of each approach
= Unthinking enthusiasm for technology impedes
solutions
= Testing is quality metric after everything else is

done
-~ Feedback closes development loop

