
The Swan User's Manual

Version 1.1

Jun Yang Cli�ord A. Sha�er Lenwood S. Heath

Department of Computer Science

Virginia Tech

Blacksburg, Va. 24061

May 1995

CONTENTS 1

Contents

1 Introduction 1

2 Swan Viewer Interface (SVI) 2

3 Swan Annotation Interface Library (SAIL) 5

3.1 Introduction . 5

3.2 Usage . 6

3.3 SAIL Basics . 7

3.3.1 Basic Elements . 7

3.3.2 Basic Operations . 7

3.3.3 Process Control . 9

3.3.4 Errors . 10

3.4 Data Types and Constants . 11

3.5 SAIL Function Library . 14

3.5.1 Classi�cation . 14

3.5.2 List of the functions . 16

3.5.3 Speci�cations . 17

3.6 An Example . 44

3.6.1 Annotation Techniques . 44

3.6.2 An example: bst.c . 48

References 48

A The make�le for bst 50

B Source Code of bst.c 51

1

1 Introduction

Swan is a data structure visualization system. Its main purpose is to allow the user to visualize

the data structures used in a C/C++ program. Swan is specially designed to support visualization

of programs implementing various graph algorithms. Throughout this manual, the annotator is

the person who annotates a C/C++ program with Swan's library of visualization functions. The

viewer is the person who runs the annotated program using Swan's Viewer Interface (SVI).

In Swan, visualizationmeans a graphical representation of the data structure and the abstraction

represented by the data structure. These are intended to help the viewer understand the algorithm

implemented in the program.

To use Swan, a program must �rst be annotated, then compiled and linked with the Swan Anno-

tation Interface Library (SAIL). The viewer can then run the program.

To annotate a program, the annotator should have a clear understanding of its data structure. Then

di�erent views (i.e. graphs) of the data structure can be constructed by calling SAIL functions.

The annotator is not required to control the graphical display of these graphs, but he has full

power to decide most graphical attributes of the graphs if he wants. Swan does not assume any

responsibility to analyze or understand the speci�c data structure of the annotated program.

To run an annotated program, the viewer simply starts the executable �le of the program and

investigates the views rendered in the Swan display window. The viewer has the capability to

modify not only the graphical attributes of the graphs, but also the logical structure of the graphs

if this is allowed by the annotator. Thus, the visualization process in Swan can be considered as

a two way communication process between the annotator and the viewer. The annotator builds

di�erent views for the viewer and receives the viewer's requests to modify the views. On the other

hand, the viewer explores the views constructed by the annotator and sends requests to modify the

graphs. The protocols for this communication process are actually the main components of Swan:

the Swan Annotation Interface Library (SAIL) and the Swan Viewer's Interface (SVI).

SAIL is a library of functions which can be added in a C/C++ program by using any text editor.

SVI is a window environment in which the viewer can see the graphs and modify their graphical

attributes. He can also control the running process and modify the logical topology of those graphs

if allowed by the annotator.

The details of design and implementation of Swan can be found in [8]. Several references on graph

drawing algorithms are listed at the end of the manual.

Typographic Conventions. The following typographic conventions are observed in this manual:

Italic Font is used for formal parameter names, emphasis, and to introduce new terms.

Teletype Font is used for actual parameter names, �le excerpts, �le names, and function proto-

types.

Bold Font is used for proper titles.

2 2 SWAN VIEWER INTERFACE (SVI)

2 Swan Viewer Interface (SVI)

Windows SVI provides the viewer's interface with an annotated program. It contains a main

window entitled \Swan". The main window has a control panel which is a set of buttons with

di�erent functionalities. It also has three child windows: the display window, the I/O window

and the location window. The display window is the place for the graphs created in Swan to

be displayed. The I/O window is used by the annotator and Swan system to display one-line

messages and get input from the viewer. The coordinates of the cursor in the display window are

shown in the location window (Figure 1).

Figure 1: Two views of a graph created in an annotated minimum spanning tree algorithm. The

display window is the big rectangular area in which the two views are shown. The I/O window is

the long grey box at the bottom with a message displayed in it. The location window is the small

box next to the I/O window which contains the coordinates of the cursor.

Picking The viewer can pick a node or an edge in Swan display window to get more information

about it.

To pick a node, click on the node. A popup window will appear with the ID and label of the node

displayed in it. The popup window has to be closed by clicking it again before any other action

can be taken.

3

To pick an edge, click on the edge. A popup window will appear to display the ID's of the edge's

two end nodes and its label. The popup window has to be closed by clicking it again before any

other action can be taken.

Panning and Zooming There are eight buttons in the upper right hand corner of the main

window, Six of them are used to pan and zoom the graphs in the display window. The �rst four

buttons are used to move the viewed area in four directions indicated by the corresponding arrows.

The next two buttons are used to zoom in or out.

The buttons Swap andMove are used to swap or move the nodes in a graph. These two functions

are only allowed on some speci�c graph layouts, such as KKNET layout of a general undirected graph

(Section 3.3.1). To swap physical positions of two nodes in one graph, the viewer picks two nodes

in turn. Their positions will be swapped automatically by Swan. To move a node, the viewer

picks a node and selects a destination position. Swan will move the node to that position.

Process Control The three buttons in the lower right hand corner of the main window are used

to control the running process of the annotated program. Clicking button RUN will make the

program run in continuous mode. Click button STEP will make the program to run in step mode.

When the program is running in step mode, it will stop at any break point set by the annotator,

waiting for the viewer to click button STEP to continue running in step mode or button RUN to

run in continuous mode. When in continuous mode, the annotator's break points will be ignored.

The annotator can disable these two buttons. A disabled button has no e�ect on the program if it

is clicked.

QUIT can be clicked to leave Swan. The annotator cannot disable it.

Graphical Attributes Modi�cation Every graph, node and edge created in Swan has a set

of graphical attributes. For a graph, these attributes include default graphical attributes for its

nodes and edges and its layout method. For a node, these attributes include type, color, size, and

line thickness. For an edge, these attributes include color and line thickness.

To modify graphical attributes, the viewer can click the Attributes button on the top left corner

of the Swan main window. A popup menu will appear. It has four items: Graph Attributes,

Node Attributes, Edge Attributes and Global Attributes. The viewer can select any one

of these items to modify its graphical attributes accordingly. For example, if the viewer selects

Graph Attributess, Swan will display a message in the I/O window which asks the viewer to

pick a graph from the graphs in the Swan display window. The viewer can pick a graph by clicking

in the area it covers in Swan display window. A popup window which contains all the modi�able

graphical attributes of the picked graph will appear. The buttons in the Node Attributes box

are used to change the default attributes of nodes in the graph, including:

Type - change the shape of the nodes. It can be Box or Circle.

Color - change the color of the nodes.

4 2 SWAN VIEWER INTERFACE (SVI)

Filled - draw the nodes in their framed shape or in �lled areas.

Thickness - change the thickness of the lines.

Width, Height - control the sizes of the nodes.

The buttons on the right side of the window are used to change the default attributes of edges in

the graph, including:

Color - change the color of the edges.

Thickness - change the thickness of the lines used to draw the edges.

Length - control the minimum length of the edges.

Label - determine whethe to show the edge label or not.

The buttons on the lower left corner are used to control the layout of the graph, including:

Layout - select di�erent layout algorithm for the graph.

Mode - select layout mode between AUTO and MANU. If it is in AUTO mode, the position of the graph

will be decided by Swan. If it is in MANU mode, the position of the graph can be adjusted

manually by the viewer.

Relayout - turn on or o� the automatic relayout switch. If it is ON, any modi�cation of the

physical attributes of the graph will cause Swan to redraw the the graph. Otherwise, the

graph will only be redrawn until the annotator requests.

The viewer can change the attributes to the ones he prefers. Finally, the button OK in the popup

window needs to be clicked to con�rm all the modi�cations and the graph will be redrawn with

the new set of attributes. Otherwise, if the button Cancel is clicked, all the modi�cations will

be ignored and graph will be the same as before. Graphical attributes of nodes and edges can be

modi�ed in a similar way.

Graph Editing The logical structure of an annotated graph can be modi�ed interactively by

the viewer through insertion or deletion of nodes and edges. The annotator can enable or disable

any of these functions. An editing function is e�ective only when it is enabled.

To edit a graph, click the button Edit on the upper left corner of the main window. A popup

menu will appear. It has four items: Insert Node, Delete Node, Insert Edge, and Delete

Edge. They correspond to the four graph editing functions mentioned above. Select one of these

items to initiate the corresponding function.

Because the annotator has control of the logical structure of the graph, any modi�cation on the

logical structure eventually must be performed by the annotator. Therefore, the annotator actually

5

determines the semantics of the editing functions. In most cases, the annotator will provide func-

tions corresponding to the labels of those menu items, however, nothing stops the annotator from

providing functions which may have nothing to do with insertion or deletion of nodes and edges.

The viewer needs to be careful while editing to follow the instructions provided by the annotator

in the Swan I/O window.

Graph Layout Saving and Restoring During execution of the annotated program, the viewer

may want to save a particular graph layout. This is supported in Swan. Saving a graph layout

means to save the physical layout of the graph and all the graphical attributes associated with it so

that when the layout is restored, the graph will look exactly like when it was saved. However, the

restored graph is an image which cannot be used directly as input data to the annotated program.

Click the button File to reach the menu items Save and Load. To save a graph layout, select

Save, pick a graph, and specify a �le name in the I/O window. To load a graph layout, select

Load, and give the �le name which contains the layout to be restored. Swan will let the viewer

know whether the action is successful or any error occurs.

Error Log All the errors occurring during a Swan session are recorded in the �le error.log

for future reference. A Swan user may wish to examine this �le or send a copy to the program

annotator if they suspect a problem in the annotation.

3 Swan Annotation Interface Library (SAIL)

3.1 Introduction

The Swan Annotation Interface Library (SAIL) is a set of easy to use functions for annotating a

program so that its signi�cant data structure and execution process can be visualized. Given an

appropriate description of the data structure used in a program, Swan is able to display it using

graphical elements as speci�ed by the annotator. Proper use of SAIL functions should provide

a more intuitive understanding of the data structures and the manner which the data structures

change in a program.

Graphs are used to represent the actual data structures in the program or the abstractions repre-

sented by those data structures. For example, consider a C program to �nd a minimum spanning

tree in a graph G. The graph is stored in the program using an adjacency list. To annotate this

program, two views can be constructed. A view of the adjacency list is a direct representation of

the physical data structure used in the program. A view of an undirected graph represents the

logical topology of the graph G (Figure 1).

The annotator should have a good understanding of the data structures in a program before

designing views of the data structure. In Swan, a view is a graph which consists of a set of nodes

and a set of edges. The semantics of nodes and edges in the graph are decided by the annotator,

i.e. the annotator decides what structure these nodes and edges represent.

6 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

Every Swan graph has a logical topology and a physical representation (i.e. layout). The log-

ical topology of the graph is determined by the nodes and edges in the graph. The annotator

decides what nodes and edges should be in this graph and what their meanings are. Under certain

circumstances, the viewer is allowed by the annotator to modify the logical structure of the graph.

The layout of a graph is a drawing of the graph on a 2-dimensional surface. Speci�cally, it is

an assignment of Euclidean coordinates to the nodes and edges on the X-Y plane. A graph may

have in�nitely many di�erent layouts. A layout with good readability can help the viewer's un-

derstanding of the graph. There are numerous graph drawing algorithms. Several algorithms are

implemented in Swan to draw arrays, linked lists, binary trees, general rooted trees, and general

undirected and directed graphs.

The annotator also has control of several buttons in the Swan main window. He can decide

whether the viewer is allowed to modify the logical topology of the graph by enabling or disabling

the items in the Edit menu. He can also enable/disable buttons RUN and STEP to allow or

disallow the viewer's control of the running process.

3.2 Usage

Currently SAIL supports annotations of C or C++ programs on UNIX with the X Window System

installed.

To annotate a C program, the header �le sail.h must be included. Then SAIL function calls can

be added to annotate the program. After the annotation is �nished, compile the program using

a C compiler (e.g. gcc) and link it with the C version of SAIL in libsail.a to generate the

executable �le.

To annotate a C++ program, compile the annotated program with a C++ compiler (e.g. g++)

and link it with C++ version of SAIL libsail++.a.

For example, if mst.c is an annotated C program, the following command will generate the exe-

cutable �le assuming the SAIL library libsail.a and the header �le sail.h are in your working

directory:

gcc -o mst mst.c -L. -lsail -lXt -lX11 -lm -L/usr/local/lib -lg++

If mst.c is an annotated C++ program, the command is similar, assuming the SAIL library

libsail++.a and the header �le sail.h are in your working directory:

g++ -o mst mst.c -L. -lsail++ -lXt -lX11 -lm

Before you run mst, please make sure the Swan interface �le swan.inf is in your working directory.

3.3 SAIL Basics 7

3.3 SAIL Basics

3.3.1 Basic Elements

SAIL provides a small set of elements to be used by the annotator to construct di�erent views of a

data structure. These elements not only have logical meanings, but also have graphical attributes

since they can be displayed in the Swan display window. These elements include:

graph - a generalized graph whose de�nition can be found in any data structure textbook. It can

be either undirected or directed. Every graph has a unique ID in Swan.

node - any node in a graph. Every node has an ID which must be unique within a graph. The

same ID can be used for nodes in di�erent graphs.

edge - any edge in a graph. An edge connects two nodes (e.g. node s and t) in a graph. If the

graph is directed, the edge has a direction which is from node s to node t. If the graph is

undirected, the order of the two nodes makes no di�erence.

LC - Layout Component(LC) is a mechanism used by the annotator to provide graphical layout

hints to Swan. It does not carry any logical information.

Valid LC's are:

ARRAYACROSS - a horizontal array.

ARRAYDOWN - a vertical array.

LISTACROSS - a horizontal linked list.

LISTDOWN - a vertical linked list.

CIRCLENET - nodes will be evenly distributed on a circle and edges are straight lines forming

chords of the circle.

BINTREE - The graph will be laid out as a binary tree.

TREE - The graph will be laid out as a rooted tree.

KKNET - The general undirected graph will be laid out using the Kamada and Kawai's algo-

rithm in [5].

HIERARCHY - The general directed graph will be laid out hierarchically.

MANUAL - The positions of nodes in the LC must be speci�ed by the annotator directly. Then

edges will be drawn as straight lines connecting the nodes.

3.3.2 Basic Operations

Following are the operations that can be performed on the basic elements.

Graph

A graph is created by sw newgraph. A unique ID should be provided by the annotator. If the an-

notator does not want to specify the ID, NULLGRAPHID can be used as the corresponding argument.

8 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

Then the function will return an ID generated automatically by the system. This ID can be used

later to refer to this graph. The graph can be created as a directed graph or an undirected graph.

The default display type of nodes in this graph must also be declared (e.g. BOX or CIRCLE).

A graph is deleted by sw deletegraph. If the graph is displayed, it will be removed from the

window. The ID of the graph will become invalid.

A graph can be displayed by sw displaygraph. sw displayallgraphs is used to display all the

valid graphs in Swan.

A graph contains a set of nodes and edges. The default graphical attributes of nodes and edges in

a graph can be set by the function sw setgraphattr.

Layout Component(LC)

A graph in Swan consists of a set of LC's. Each LC has a set of nodes and edges. When the graph

is displayed, the layout of nodes and edges will be determined by the type of the LC they belong

to.

LC's in a graph are organized as a rooted tree. The graph has a root LC. Every other LC has a

parent LC and a set of children LC. The parent-child relation between two LC's are established by

inserting an edge which connects two nodes in these two LC's.

Currently, only LISTDOWN and LISTACROSS LC's can have children LC's of the type LISTDOWN or

LISTACROSS. The restriction is one node in the parent LC can be connected with at most one child

LC. LC's of other types cannot have children LC's.

Each graph has a current LC. All the insertions of nodes and edges in the graph will happen in this

current LC. Therefore, at least one LC has to be created in each graph so that nodes and edges

can be inserted. However, in most cases, only one LC will be created for a graph.

An LC is created by sw newlc. It is deleted by sw deletelc. The current LC can be changed

by sw setcurlc. The default graphical attributes of nodes and edges in an LC can be set by the

function sw setlcattr. These attributes override the default attributes of the graph.

Node

A node is inserted into a graph by calling function sw insertnode. The ID of the node is given by

the annotator which can be anything castable to NODEID, a SAIL data type.

This node is logically inserted in the graph and physically inserted in the current LC of the graph,

i.e. the graphical attributes of the node are inherited from the current LC.

The graphical attributes for a speci�ed node can be modi�ed by the function sw setnodeattr.

This function does not a�ect settings of other nodes' graphical attributes.

A node can be deleted from a graph by the function sw deletenode. It will be deleted both

logically and physically, i.e. if the node is already displayed, it will be removed from Swan display

window. Further, all the edges incident on the node will be deleted.

3.3 SAIL Basics 9

Edge

An edge is inserted in a graph by functions sw insertedge or sw insertnodeedge. The �rst

function will insert an edge between node1 and node2. If either node1 or node2 is not in the

graph, the edge cannot be inserted successfully. Obviously it's cumbersome to insert the two end

nodes of an edge every time before the edge can be inserted. The second function is more powerful

from this point of view. Its main purpose is to insert an edge along with either or both of the

nodes on which the edge is incident, as necessary.

sw insertbinedge is used to insert edges into a binary tree. Identifying whether a node is its

parent's left or right child makes edge insertion in a binary tree special.

In a directed graph, each edge will have a direction from node1 to node2. In an undirected graph,

the order of the edge's two nodes makes no di�erence.

If the edge's two nodes are in the same LC, the edge will also belong to this LC. Otherwise it

connects two di�erent LC's. In this case, the nearest common ancestor of the two LC's in the LC

tree is found. Then the edge is assigned to that LC.

An edge can be deleted from a graph by the function sw deleteedge. The graphical attributes of

an edge can be modi�ed by the function sw setedgeattr. This function does not a�ect settings

of graphical attributes of other edges.

3.3.3 Process Control

Swan provides several process control resources to allow the annotated program to be the main

controller of the visualization. These resources include two control buttons, one graph edit menu

and a set of process control functions. The viewer of the visualization has limited control over the

running of the process.

RUN and STEP

Buttons RUN and STEP in the lower right hand corner of the Swan main window are used to

control the process of the annotated program. Button RUN makes the program run in continuous

mode. Button STEP makes the program run in step mode. When the program is running in

step mode, it stops at any break point set by the annotator, waiting for the viewer to click the

STEP button to run in step mode or the RUN button to run in continuous mode (break points

are ignored in continuous mode). A green frame will appear around the button when the process

is running in its corresponding mode. The annotator can enable or disable these two buttons by

using sw enablebuttons or sw disablebuttons.

Graph Edit Menu

The edit button is contained in the upper left corner of the Swan main window. There are four

menu items in its associated popup window. Each of these is a graph editing action, i.e. insert a

node, delete a node, insert an edge, and delete an edge. After the viewer selects one of these items,

the annotated program will be noti�ed if it is waiting for any of these actions to be taken. The

10 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

annotator can decide what to do according to the menu item selected. Thus, the semantics of these

menu items are decided by the annotator, which is not necessarily the same as what the label of

the item implies. The annotator can enable or disable any of these menu items by calling function

sw enablemenuitem or sw disablemenuitem.

Process Control Functions

There are a few functions in SAIL which are used to control the process. Several other functions

have side e�ects on the running process. A brief introduction of their usage is given here. Please

refer to Section 3.5 for details.

Function sw init initializes the Swan system. It must be the �rst SAIL function call in the

annotated program. After Swan is initialized, the Swan main window is displayed and it is ready

to receive SAIL function calls from the annotated program.

Function sw quit should be called to quit Swan. This function informs Swan to delete all the

elements it created and close all Swan windows.

Within the annotated program, sw run and sw step can be used to set the current mode for the

running process. sw run makes the program run in continuous mode in which the break points set

in the annotated program are ignored. sw step makes the program run in step mode so that the

program will stop at any break point set by the annotator.

Break points in the annotated program are set by SAIL function sw break. If this function is

called within the program, the process will stop and wait for the viewer to click either RUN

or STEP to resume running in the corresponding mode. Therefore, if sw break is used in the

program, be careful not to disable the RUN and STEP buttons at the same time.

Function sw wait will make the program stop running and wait for a signal. Signals sent to the

program by Swan to indicate which control button is clicked or which graph editing function is

selected. Once the function receives one of the signals it is waiting for, it returns with the ID of

that signal.

There is a group of SAIL functions to get viewer's input, either a string of characters or a sequence

of mouse operations. Once the input is received, they return and the program continues. These

functions include sw getstr, sw pickgraph, sw picknode, sw pickedge and sw pickpos.

3.3.4 Errors

Errors could occur when SAIL functions are called with wrong arguments (i.e., out of range),

functions are called in an inappropriate order, and under other circumstances. SAIL has an

internal variable to keep the ID of the most recent error. When an error occurs, SAIL function

sw errno can be used to get the ID of the error. Function sw errmsg can be used to get a brief

description of an error. In addition, all the errors occurring during a Swan session are recorded in

the �le error.log for future reference.

3.4 Data Types and Constants 11

3.4 Data Types and Constants

In addition to standard data types and constants in C or C++, several data types and constants

are de�ned in SAIL for use in SAIL function calls.

The data types in SAIL for the annotator to use are as followings:

� GRAPHID

� LCID

� LCTYPE

� NODEID

� NODETYPE

� LABEL

� BOOLEAN

� INDEX

� IVALUE

The possible values of these types to be used in SAIL functions are de�ned as constants in header

�le sail.h which should be included in every annotated program. These constants are introduced

with the data types they are associated with.

GRAPHID

The ID of a graph given by SAIL as the return value from function sw newgraph. The annotator

needs to declare a variable of this type for each graph.

NULLGHAPHID can be used as one of the arguments to sw newgraph which indicates the annotator

would like SAIL to generate an ID for the graph automatically.

LCID

The ID of a Layout Component (LC) given by SAIL as the return value from function sw newlc.

The annotator needs to declare a variable of this type for each LC.

NULLLCID can be used as one of the arguments to sw newlc which indicates the annotator would

like SAIL to generate an ID for the LC automatically.

LCTYPE

The type of a Layout Component. The valid types are:

� ARRAYACROSS

12 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

� ARRAYDOWN

� LISTACROSS

� LISTDOWN

� CIRCLENET

� KKNET

� TREE

� BINTREE

� HIERARCHY

� MANUAL

NODEID

The ID of a node. It can be anything castable to NODEID, such as int, *int, long, *long, etc.

The ID of a node is determined by the annotator so that he can associate the node created in

Swan with a certain data structure in the annotated program.

NODETYPE

The type of a node. The valid types are:

� BOX

� TABOXL

� CIRCLE

A node of type TABOXL looks like: 15
?

-

The left box is used to display the label of the node.

The middle and right boxes are used to connect two neighbor nodes if any.

LABEL

LABEL is a string type and is equivalent to char*. The labels of nodes and edges are always

declared to be of type LABEL.

BOOLEAN

It is a Boolean type which only has two values TRUE or FALSE.

INDEX and IVALUE

These two types are closely related to the settings of graphical attributes of graphs, LC's, nodes,

edges and some settings of Swan's global environment.

3.4 Data Types and Constants 13

Each value of INDEX represents a graphical attribute or a system switch. IVALUE is the actual

value of that attribute to be set. The following list is used by SAIL function sw setgraphattr,

sw setlcattr, sw setnodeattr, sw setedgeattr, and sw setcurrentattr. The indices and their

legal values are:

1. GDIRECTED - whether the graph is directed or undirected. Use DIRECTED and UNDIRECTED for

the two types of graph respectively.

2. GNEWLAYOUT - a ag. It can be TRUE or FALSE. If it is TRUE, the layout of the graph will be

updated when it is displayed again. Otherwise, not.

3. GAUTORELAYOUT - a ag. It can be TRUE or FALSE. If it is TRUE, whenever there is a modi�-

cation which may cause the layout of the graph to change, the ag GNEWLAYOUT of the graph

will be set as TRUE. Otherwise, the system will not change GNEWLAYOUT.

4. GLAYOUTMODE - a ag which can be either MANULAYOUT or AUTOLAYOUT. If it is AUTOLAYOUT,

the position of the graph is determined by Swan. If it is MANULAYOUT, the viewer can change

the position of the graph manually.

5. GNODETYPE - type of the node. It could be:

� BOX

� TABOXL

� CIRCLE

6. GNODECOLOR - color of the node. The list of Swan's colors is:

� BLACK

� DGRAY

� MGRAY

� LGRAY

� BLUEGRAY

� LBLUE

� PEACH

� LCYAN

� MCYAN

� GRAY

� MYELLOW

� LYELLOW

� MAGENTA

� DGREEN

� PASGREEN

7. GNODEFILLED - whether the boxes or circles representing the node are �lled or not. TRUE for

�lled. FALSE for un�lled.

14 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

8. GNODEWIDTH - width of the bounding box of the node. The value is an integer.

9. GNODEHEIGHT - height of the bounding box of the node. The value is an integer.

10. GNODELINETH - thickness of the line to draw the node. It can be either THICKLINE or

THINLINE.

11. GNODEPOS - position of the node. Its value is a pair of coordinates (x; y) which is a relative

position of the node within its layout component.

12. GEDGELENGTH - minimum length of the edge in a graph. The value is an integer.

13. GEDGELINETH - thickness of the line to draw the edge. It can be either THICKLINE or

THINLINE.

14. GEDGELABEL - a ag to indicate whether the label of the edge should be displayed. It can be

either TRUE, to display, or FALSE, not to display.

15. GEDGECOLOR - color of the edge. For valid color values see the list under GNODECOLOR.

16. GAUTOREDRAW - a ag to indicate whether Swan should redraw a graph automatically after

the graph is modi�ed. TRUE to redraw, FALSE not to redraw. This is a system-wide switch.

3.5 SAIL Function Library

3.5.1 Classi�cation

Functions in SAIL are classi�ed as follows.

1. Functions for constructing and modifying graphs

� sw newgraph

� sw deletegraph

� sw insertnode

� sw deletenode

� sw insertedge

� sw insertnodeedge

� sw insertbinedge

� sw deleteedge

2. Functions for displaying graphs

� sw displaygraph

� sw displayallgraphs

3. Functions for specifying layout components

� sw newlc

3.5 SAIL Function Library 15

� sw deletelc

� sw setcurlc

4. Functions for specifying graphic attributes

� sw setcurrentattr

� sw setgraphattr

� sw getgraphattr

� sw setlcattr

� sw setnodeattr

� sw getnodeattr

� sw setedgeattr

� sw getedgeattr

� sw setgraphpos

� sw getgraphpos

5. Functions for program status control

� sw init

� sw quit

� sw clear

� sw run

� sw step

� sw break

� sw wait

� sw enablebuttons

� sw disablebuttons

� sw enablemenuitem

� sw disablemenuitem

� sw errmsg

� sw errno

6. Input/Output

� sw print

� sw getstr

� sw pickgraph

� sw picknode

� sw pickedge

� sw pickpos

� sw getpickedgraph

16 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

3.5.2 List of the functions

Following is a complete list of the C prototypes of SAIL's functions in alphabetic order.

void sw break(void) ;

void sw clear(void) ;

BOOLEAN sw deleteedge(GRAPHID, NODEID, NODEID) ;

BOOLEAN sw deletelc(GRAPHID, LCID) ;

BOOLEAN sw deletegraph(GRAPHID) ;

BOOLEAN sw deletenode(GRAPHID, NODEID) ;

void sw disablebuttons(int) ;

BOOLEAN sw disablemenuitem(int, int) ;

BOOLEAN sw displaygraph(GRAPHID) ;

BOOLEAN sw displayallgraphs(void) ;

void sw enablebuttons(int) ;

BOOLEAN sw enablemenuitem(int, int) ;

BOOLEAN sw errmsg(int, char*) ;

int sw errno(void) ;

sw getedgeattr(GRAPHID, NODEID, NODEID, INDEX, ...) ;

sw getgraphattr(GRAPHID, INDEX, IVALUE) ;

sw getgraphpos(GRAPHID, int*, int*) ;

BOOLEAN sw getnodeattr(GRAPHID, NODEID, INDEX n, ...) ;

BOOLEAN sw getpickedgraph(GRAPHID*) ;

void sw getstr(char*) ;

BOOLEAN sw init(void) ;

BOOLEAN sw insertbinedge(GRAPHID, NODEID, NODEID, LABEL, BOOLEAN) ;

BOOLEAN sw insertedge(GRAPHID, NODEID, NODEID, LABEL) ;

BOOLEAN sw insertnode(GRAPHID, NODEID, LABEL) ;

BOOLEAN sw insertnodeedge(GRAPHID, NODEID, LABEL, NODEID, LABEL, LABEL) ;

LCID sw newlc(GRAPHID, LCID, LCTYPE) ;

GRAPHID sw newgraph(GRAPHID, NODETYPE, FLAG) ;

3.5 SAIL Function Library 17

BOOLEAN sw pickedge(NODEID*, NODEID*) ;

BOOLEAN sw pickgraph(GRAPHID*) ;

BOOLEAN sw picknode(NODEID*) ;

BOOLEAN sw pickpos(int*, int*) ;

void sw print(LABEL) ;

void sw quit(void) ;

void sw run(void) ;

BOOLEAN sw setcurlc(GRAPHID, LCID) ;

BOOLEAN sw setcurrentattr(INDEX, IVALUE) ;

BOOLEAN sw setedgeattr(GRAPHID, NODEID, NODEID, INDEX, ...) ;

BOOLEAN sw setgraphattr(GRAPHID, INDEX, IVALUE) ;

BOOLEAN sw setgraphpos(GRAPHID, int, int) ;

BOOLEAN sw setlcattr(LCID, INDEX, IVALUE) ;

BOOLEAN sw setnodeattr(GRAPHID, NODEID, INDEX, IVALUE) ;

void sw step(void) ;

int sw wait(int) ;

3.5.3 Speci�cations

sw break

syntax :

void sw break(void)

parameters:

None.

return:

None.

description:

Set a break point in the annotated program. If the program runs in step mode, it stops

at this break point and waits for the viewer to click button Step or Run to continue.

If the program runs in continuous mode, the break point is ignored.

18 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

sw clear

syntax :

void sw clear(void)

parameters:

None.

return:

None.

description:

Delete all the graphs created in Swan. The Swan display window will also be cleared.

sw deleteedge

syntax :

BOOLEAN sw deleteedge(GRAPHID g, NODEID sn, NODEID en)

parameters:

g - ID of the graph from which the edge will be deleted.

sn, en - ID's of the two end nodes of the edge.

return:

TRUE if the edge is successfully deleted from graph G.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Delete an edge between node sn and en in graph G. If graph g is undirected, the order

of the two nodes makes no di�erence. If graph g is directed, the edge from sn to en is

deleted. If the edge is displayed in Swan display window, it will be erased.

3.5 SAIL Function Library 19

sw deletegraph

syntax :

BOOLEAN sw deletegraph(GRAPHID g)

parameters:

g - ID of the graph to be deleted.

return:

TRUE if the graph is successfully deleted.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Delete a graph g. All the nodes and edges in the graph will be deleted. If graph g is

already displayed, it will be removed from the Swan display window.

sw deletelc

syntax :

BOOLEAN sw deletelc(GRAPHID g, LCID lc)

parameters:

g - ID of the graph from which the layout component will be deleted.

lc - ID of the layout component.

return:

TRUE if the layout component is successfully deleted from graph g.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Delete a layout component from graph g. All the nodes and edges in this layout

component will be removed from the window if this LC is currently displayed.

20 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

sw deletenode

syntax :

BOOLEAN sw deletenode(GRAPHID g, NODEID n)

parameters:

g - ID of the graph from which the node will be deleted.

n - ID of the node to be deleted.

return:

TRUE if the node is successfully deleted from graph g.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Delete a node n from graph g. All the edges in graph g incident on n will be deleted

too.

sw disablebuttons

syntax :

void sw disablebuttons(int buttons)

parameters:

buttons - ID's of buttons to be disabled. These ID's can be combined together using or

operation. Valid button ID's are:

� RUN

� STEP

return:

None.

description:

Disable process control buttons. There is no e�ect if the viewer clicks a disabled button.

Disabled buttons can be enabled by sw enablebuttons.

3.5 SAIL Function Library 21

sw disablemenuitem

syntax :

BOOLEAN sw disablemenuitem(int menu, int item)

parameters:

menu - ID of the menu in which the item will be disabled.

item - index of the item in the menu. Valid menu ID's and their item indices are:

� EDITMENU

{ ITEMINSNODE

{ ITEMDELNODE

{ ITEMINSEDGE

{ ITEMDELEDGE

return:

TRUE if the menu item is disabled.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Disable an item in the menu so that it cannot be selected by the viewer. Disabled menu

items can be enabled by sw enablemenuitem.

sw displaygraph

syntax :

BOOLEAN sw displaygraph(GRAPHID g)

parameters:

g - ID of the graph which will be displayed.

return:

TRUE if the graph is successfully displayed.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Display graph g in the Swan display window. If the layout mode is AUTOLAYOUT (the

default value), the position of the graph is determined by Swan automatically. If the

layout mode is MANULAYOUT, the position of the graph can be set by using the function

sw setgraphpos, and can also be changed by the viewer during run time.

22 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

sw displayallgraphs

syntax :

void sw displayallgraphs(void)

parameters:

None.

return:

None.

description:

Display all the graphs currently existing in Swan into the Swan display window. Po-

sitions of graphs are determined by the layout mode of each graph individually.

sw enablebuttons

syntax :

void sw enablebuttons(int buttons)

parameters:

buttons - ID's of buttons to be enabled. These ID's can be combined together using the

or operation. Valid button ID's are:

� RUN

� STEP

return:

None.

description:

Enable process control buttons so that they can be used by the viewer. Enabled buttons

can be disabled by sw disablebuttons.

3.5 SAIL Function Library 23

sw errmsg

syntax :

BOOLEAN sw errmsg(int errno, char* str)

parameters:

errno - the ID of an error.

str - a string to hold the message copied from SAIL.

return:

TRUE if the error number is valid and a message about this error is successfully copied to str.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Gives a brief description of the error with ID errno.

sw errno

syntax :

int sw errno(void)

parameters:

None.

return:

The ID of the current system error.

description:

Check the type of the most recent error during a Swan session.

24 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

sw enablemenuitem

syntax :

BOOLEAN sw enablemenuitem(int menu, int item)

parameters:

menu - ID of the menu in which item will be disabled.

item - index of the item in menu. Please refer to descriptions of sw disablemenuitem for

valid menu ID's and their item indices.

return:

TRUE if the menu item is enabled.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Enable item in menu so that it can be selected. Items can be disabled by sw disablemenuitem.

sw getedgeattr

syntax :

BOOLEAN sw getedgeattr(GRAPHID g, NODEID sn, NODEID en, INDEX n, ...)

parameters:

g - ID of the graph to which the edge belongs.

sn, en - ID's of the two end nodes of the edge.

n - the index to the attribute table. It speci�es which attribute of the edge to retrieve.

... - the address of the memory to keep the retrieved value of the attribute. The value

can be of di�erent types depending on the attribute.

return:

TRUE if the value of the attribute is successfully retrieved.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Retrieve the value of a speci�c graphic attribute for an edge. Attribute n can be:

� GEDGELENGTH

� GEDGELINETH

� GEDGECOLOR

Valid values of these attributes can be found in Section 3.4.

3.5 SAIL Function Library 25

sw getgraphattr

syntax :

BOOLEAN sw getgraphattr(GRAPHID g, INDEX n, IVALUE *value)

parameters:

g - ID of the graph whose attribute will be modi�ed.

n - index to the attribute table. It speci�es which attribute of the graph to set.

value - address of the memory holding the retrieved value of the attribute.

return:

TRUE if the value of the attribute is successfully modi�ed.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

This function retrieves the value of a speci�c attribute of a graph. Attribute n can be

an one of

� GDIRECTED

� GNEWLAYOUT

� GAUTORELAYOUT

� GLAYOUTMODE

� GNODETYPE

� GNODECOLOR

� GNODEFILLED

� GNODEWIDTH

� GNODEHEIGHT

� GNODELINETH

� GEDGELENGTH

� GEDGELINETH

� GEDGECOLOR

� GEDGELABEL

Valid values of these attributes can be found in Section 3.4.

26 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

sw getgraphpos

syntax :

BOOLEAN sw getgraphpos(GRAPHID g id, int *x, int *y)

parameters:

g id - ID of the graph.

x, y - address holding the position of the graph to be retrieved.

return:

TRUE if a graph is successfully set at the position as speci�ed.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Retrieve the position of graph g id.

3.5 SAIL Function Library 27

sw getnodeattr

syntax :

BOOLEAN sw getnodeattr(GRAPHID g, NODEID n id, INDEX n, ...)

parameters:

g - ID of the graph which contains the node n id.

n id - ID of the node from which the attribute will be retrieved.

n - index to the attribute table. It speci�es which attribute of the node to get.

... - address for the value(s) of the attribute. There could be one or two addresses de-

pending on the attribute.

return:

TRUE if the node's attribute is successfully retrieved.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Retrieve the value of a speci�c graphic attribute of a node. Attribute n can be:

� GNODETYPE

� GNODECOLOR

� GNODEFILLED

� GNODEWIDTH

� GNODEHEIGHT

� GNODELINETH

� GNODELABEL

� GNODEPOS --- Two parameters follow: x and y.

Valid values of these attributes can be found in Section 3.4.

28 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

sw getpickedgraph

syntax :

BOOLEAN sw getpickedgraph(GRAPHID* g ptr)

parameters:

g ptr - address storing the ID of the picked graph.

return:

TRUE if there is a picked graph. The ID of the picked graph will be copied to the place

referenced by g ptr.

FALSE if there is no picked graph. The value pointed at by g ptr is not changed.

description:

Get the ID of the graph which is picked by the viewer. Note that if the viewer picks a

node or an edge, the graph which the node or the edge belongs to is considered as the

picked graph.

sw getstr

syntax :

void sw getstr(char* str)

parameters:

str - pointer to a character string.

return:

None.

description:

Get a string which is entered by the viewer on the keyboard. The Return key must be

the last character entered to end the string. The annotator can use this function to get

di�erent kinds of input from the viewer by analyzing the string str with standard C

function sscanf.

3.5 SAIL Function Library 29

sw init

syntax :

BOOLEAN sw init(void)

parameters:

None.

return:

TRUE if Swan is successfully initialized.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Establish a connection between the annotated program and the Swan environment. If

this function returns TRUE, all subsequent SAIL function calls in the annotated program

can be accepted. This function should always be used as the �rst SAIL function call

in any annotated program. If Swan is successfully initialized, the Swan main window

will appear.

sw insertbinedge

syntax :

BOOLEAN sw insertbinedge(GRAPHID g, NODEID sn, NODEID en, LABEL str, BOOLEAN child)

parameters:

g - ID of the graph to which the edge will be inserted.

sn, en - ID's of the two end nodes of the edge.

str - label of the edge.

child - a ag to indicate whether en is the left or the right child of sn in the binary tree.

return:

TRUE if the edge is successfully inserted into graph g.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Insert an edge from sn to en in graph g. Note en will be considered as either left or

right child of node sn according to the ag child. This function can only be used to

insert an edge into a layout component of type BINTREE.

30 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

sw insertedge

syntax :

BOOLEAN sw insertedge(GRAPHID g, NODEID sn, NODEID en, LABEL str)

parameters:

g - ID of the graph to which the edge will be inserted.

sn, en - ID's of the two end nodes of the edge.

str - label of the edge.

return:

TRUE if the edge is successfully inserted into graph g.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Insert an edge between node sn and en in graph g. If graph g is undirected, the order

the two nodes makes no di�erence. If graph g is directed, the edge will have a direction

that is from node sn to en. If graph g is displayed, the edge will also be displayed in

Swan display window. If any of the two end nodes does not exist in graph g, the edge

will not be inserted.

sw insertnode

syntax :

BOOLEAN sw insertnode(GRAPHID g, NODEID n id, LABEL str)

parameters:

g - ID of the graph which contains the node n id.

n id - ID of the node which will be inserted into graph g.

str - label of the node.

return:

TRUE if the node is successfully inserted into graph g.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Insert node n id into graph g. If graph g is already displayed, node n id will also be

displayed in Swan display window.

3.5 SAIL Function Library 31

sw insertnodeedge

syntax :

BOOLEAN sw insertnodeedge(GRAPHID g, NODEID sn, LABEL str1, NODEID en,

LABEL str2, LABEL str3)

parameters:

g - ID of the graph.

sn, en - ID's of the two end nodes of the edge.

str1 - label of node sn.

str2 - label of the node en.

str3 - label of the edge.

return:

TRUE if the edge is successfully inserted into graph g.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Insert an edge connecting nodes sn and en into graph g. If either node sn or en does

not exist, it will be created and inserted into graph g. If graph g is already displayed,

the edge will also be displayed in Swan display window.

sw newlc

syntax :

LCID sw newlc(GRAPHID g, LCID lc, LCTYPE lc type)

parameters:

g - ID of the graph to which the created layout component will belong.

lc - ID of the layout component to be created.

lc type - type of the layout component to be created.

return:

ID of the created layout component.

NULLLCID if errors occur. Use sw errno to check the type of the error.

description:

Create a new layout component in graph g with ID lc. If lc is NULLLCID, Swan will

generate an ID for this LC automatically.

32 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

sw newgraph

syntax :

GRAPHID sw newgraph(GRAPHID g, NODETYPE n type, BOOLEAN f)

parameters:

g - ID of the graph to be created.

n type - type of the nodes in the graph to be created.

f - a ag to indicate whether the graph will be directed or undirected. f can be set to

DIRECTED for directed graph or UNDIRECTED for undirected graph.

return:

A graph ID if the graph is successfully created.

NULLGRAPHID if errors occur. Use sw errno to check the type of the error.

description:

Create a new graph with the speci�ed ID and node type. If the speci�ed ID is

NULLGRAPHID, Swan will generate an ID for the graph automatically. Otherwise, the

function will return the speci�ed ID. All nodes inserted into this graph will have the

speci�ed type unless explicitly modi�ed by other functions.

sw pickedge

syntax :

BOOLEAN sw pickedge(NODEID* sn, NODEID* en)

parameters:

sn, en - addresses for the edge's nodes to be stored.

return:

TRUE if an edge is successfully picked by the viewer. The ID's of the edge's two nodes will

be stored in the place referenced by sn and en.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Request the viewer to pick an edge from the graphs currently displayed. The function

will return after an edge is successfully picked or errors occur. If an edge is picked, the

graph which the edge belongs to will be regarded as the currently picked graph whose

ID can be retrieved by sw getpickedgraph.

3.5 SAIL Function Library 33

sw pickgraph

syntax :

BOOLEAN sw pickgraph(GRAPHID* g ptr)

parameters:

g ptr - addresses for the ID of the graph to be stored.

return:

TRUE if a graph is successfully picked by the viewer. The ID of the graph will be stored in

the place referenced by g ptr.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Request the viewer to pick one graph from the graphs currently displayed. The function

will return after a graph is successfully picked or errors occur.

sw picknode

syntax :

BOOLEAN sw picknode(NODEID* node id)

parameters:

node id - address for the ID of the node to be stored.

return:

TRUE if a node is successfully picked by the viewer. The ID of the node will be stored in the

place referenced by node id.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Request the viewer to pick a node from the graphs currently displayed. The function

will return after a node is successfully picked or errors occur. If a node is picked, the

graph which the node belongs to will be regarded as the currently picked graph whose

ID can be retrieved by sw getpickedgraph.

34 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

sw pickpos

syntax :

BOOLEAN sw pickpos(int* x ptr, int* y ptr)

parameters:

x ptr, y ptr - address for the position picked.

return:

TRUE if a position is successfully picked by the viewer. The X and Y coordinate of the position

is stored in x ptr and y ptr, respectively.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Request the viewer to pick a position in the Swan display window. The picked position

is represented by the pair of coordinates in Swan display plane.

sw print

syntax :

void sw print(LABEL str)

parameters:

str - a string of characters.

return:

None.

description:

Display str in the Swan I/O window.

3.5 SAIL Function Library 35

sw quit

syntax :

void sw quit(void)

parameters:

None.

return:

None.

description:

End the Swan session. The Swan system window will be closed. All subsequent SAIL

function calls in the annotated program will not be accepted unless the connection is

re-established by another sw init call.

sw run

syntax :

void sw run(void)

parameters:

None.

return:

None.

description:

Change the running mode of the annotated program from step to run.

36 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

sw setcurlc

syntax :

BOOLEAN sw setcurlc(GRAPHID g, LCID lc)

parameters:

g - ID of the graph to which the layout component lc belongs.

lc - ID of the layout component.

return:

TRUE if the current layout component is successfully set.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Set the current layout component of graph g to lc.

3.5 SAIL Function Library 37

sw setcurrentattr

syntax :

BOOLEAN sw setcurrentattr(INDEX n, IVALUE value)

parameters:

n - index to the attribute table. It speci�es which attribute to set.

value - new value of the attribute.

return:

TRUE if the value of the attribute is successfully modi�ed.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Modify the value of a default global graphical attribute in Swan. The valid attribute

n can be:

� GDIRECTED

� GNODETYPE

� GNODECOLOR

� GNODEFILLED

� GNODEWIDTH

� GNODEHEIGHT

� GNODELINETH

� GEDGELENGTH

� GEDGELINETH

� GEDGECOLOR

� GEDGELABEL

� GAUTOREDRAW

Valid values for these attributes can be found in Section 3.4.

38 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

sw setedgeattr

syntax :

BOOLEAN sw setedgeattr(GRAPHID g, NODEID sn, NODEID en, INDEX n, ...)

parameters:

g - ID of the graph to which the edge belongs.

sn, en - ID's of the two end nodes of the edge.

n - index to the attribute table. It speci�es which attribute of the edge to set.

... - new value of the attribute. The value can be of di�erent types depending on the

attribute.

return:

TRUE if the value of the attribute is successfully modi�ed.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Modify the value of a speci�c graphic attribute of an edge. The attribute n can be:

� GEDGELENGTH

� GEDGELINETH

� GEDGECOLOR

Valid values for these attributes can be found in Section 3.4.

3.5 SAIL Function Library 39

sw setgraphattr

syntax :

BOOLEAN sw setgraphattr(GRAPHID g, INDEX n, IVALUE value)

parameters:

g - ID of the graph whose attribute will be modi�ed.

n - index to the attribute table. It speci�es which attribute of the graph to set.

value - new value of the attribute.

return:

TRUE if the value of the attribute is successfully modi�ed.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Modify the value of a speci�c attribute of a graph. The valid attribute n can be:

� GDIRECTED

� GNEWLAYOUT

� GAUTORELAYOUT

� GLAYOUTMODE

� GNODETYPE

� GNODECOLOR

� GNODEFILLED

� GNODEWIDTH

� GNODEHEIGHT

� GNODELINETH

� GEDGELENGTH

� GEDGELINETH

� GEDGECOLOR

� GEDGELABEL

Valid values for these attributes can be found in Section 3.4.

40 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

sw setgraphpos

syntax :

BOOLEAN sw setgraphpos(GRAPHID g id, int x, int y)

parameters:

g id - ID of the graph.

x, y - position of the graph to be set.

return:

TRUE if a graph is successfully set at the position as speci�ed.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Set the graph at a speci�c position on the Swan display plane.

3.5 SAIL Function Library 41

sw setlcattr

syntax :

BOOLEAN sw setlcattr(GRAPHID g id, LCID lc, INDEX n, IVALUE value)

parameters:

g id - ID of the graph to which lc belongs.

lc - ID of the layout component.

n - index to the attribute table. It speci�es which attribute of the layout component to set.

value - new value of the attribute.

return:

TRUE if the value of the attribute is successfully modi�ed.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Modify the value of a speci�c graphic attribute of a layout component. Attribute n can

be:

� GNODETYPE

� GNODECOLOR

� GNODEFILLED

� GNODEWIDTH

� GNODEHEIGHT

� GNODELINETH

� GEDGELENGTH

� GEDGELINETH

� GEDGECOLOR

Valid values for these attributes can be found in Section 3.4.

42 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

sw setnodeattr

syntax :

BOOLEAN sw setnodeattr(GRAPHID g, NODEID n id, INDEX n, ...)

parameters:

g - ID of the graph which contains the node n id.

n id - ID of the node to be modi�ed.

n - index to the attribute table. It speci�es which attribute of the node to set.

... - new value(s) of the attribute. There could be one or two values depending on the

attribute.

return:

TRUE if the node's attribute is successfully modi�ed.

FALSE if errors occur. Use sw errno to check the type of the error.

description:

Modify the value of a speci�c graphic attribute of a node. The valid attribute n can be:

� GNODETYPE

� GNODECOLOR

� GNODEFILLED

� GNODEWIDTH

� GNODEHEIGHT

� GNODELINETH

� GNODELABEL

� GNODEPOS --- Two parameters follow: x and y.

Valid values for these attributes can be found in Section 3.4.

3.5 SAIL Function Library 43

sw step

syntax :

void sw step(void)

parameters:

None.

return:

None.

description:

Change running mode of the annotated program from run to step.

sw wait

syntax :

int sw wait(int signals)

parameters:

signals - signals the process is waiting for. These signals can be any one of the following

valid signals or their combinations by using or operation. Valid signals are:

� RUN

� STEP

� INSNODE

� DELNODE

� INSEDGE

� DELEDGE

return:

The signal received.

description:

Suspend running of the annotated program until any signal in the waiting list signals

generated. Signals RUN and STEP generated when the corresponding button in the Swan

window clicked. Signals INSNODE, DELNODE, INSEDGE and DELEDGE are generated when

the corresponding menu item in graph editing menu is selected.

44 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

3.6 An Example

3.6.1 Annotation Techniques

Before a concrete example is introduced, some useful techniques to annotate a program are sum-

marized here.

An annotation template

The following is a template which shows the basic procedures to annotate a program using SAIL:

#include "sail.h" /* The header �le for SAIL which must be

included in every annotated program. */

GRAPHID g id; /* ID of the graph to be created in Swan. */

LCID lc id; /* ID of the layout component to be created in Swan.

Every graph created in Swan must have at least one LC.

Here lc id is the LC in the graph g id. */

main()

f

...

sw init(); /* Initialize Swan. This function must be the �rst

SAIL function call in the annotated program. */

...

create a graph(); /* Create a graph in Swan. Details are shown below. */

...

sw displayallgraphs(); /* Draw all the graphs created in the Swan

display window. */

...

sw quit(); /* Quit Swan. All the graphs created are deleted.

The Swan display window is cleared. */

...

g

create a graph()

f

...

/* Create an undirected graph in Swan. The shapes of nodes in the graph

are circles. The graph ID returned from sw newgraph will be used in

following SAIL function calls to refer to this graph. */

g id = sw newgraph(NULLGRAPHID, CIRCLE, UNDIRECTED);

/* sw setgraphattr is used to set graphical attributes of the graph.

Here, for example, the node color is light yellow, and both the width

and height of the node are 20 pixels. */

sw setgraphattr(g id, GNODECOLOR, LYELLOW);

sw setgraphattr(g id, GNODEWIDTH, 20);

3.6 An Example 45

sw setgraphattr(g id, GNODEHEIGHT, 20);

...

/* The LC is created for graph g id. It informs Swan to draw the

graph as a circle. */

lc id = sw newlc(g id, NULLLCID, CIRCLENET);

/* Set current LC as lc id so that nodes or edges will be inserted

into it if any insertion operations are executed. */

sw setcurlc(g id, lc id);

...

/* Insert a node into graph g id. It will be inserted in the LC lc id. */

sw insertnode(g id, (NODEID)node id, node label);

...

/* Insert an edge into graph g id. It will be inserted in the LC lc id. */

sw insertedge(g id, (NODEID)node id1, (NODEID)node id2, edge label);

...

g

Run the program repeatedly

The viewer may want to run the annotated program several times without quitting Swan. The

annotator can use the following mechanism to make it possible. First, rename the main function

in the original C program (e.g., to algo 1), and then make the main function in the annotated

program to contain an in�nite loop which repeats the following steps:

� Initialize Swan once, then wait for the viewer to click RUN or STEP to start;

� Execute the function algo 1; and

� Wait for the viewer clicking RUN or STEP to run again.

Following is a code segment to describe this strategy:

main()

f

...

sw init();

while (TRUE) f

algo 1(...);

sw print("Press RUN or STEP to run again") ;

sw wait(RUN j STEP) ;

g

...

g

46 3 SWAN ANNOTATION INTERFACE LIBRARY (SAIL)

The viewer can click the button QUIT to stop running the program.

Re-build a graph

SAIL provides several functions to create a graph. If an existing graph topology is modi�ed during

the running of the annotated program, Swan has to be noti�ed about this modi�cation in order

to make future operations on this graph correct.

Usually, there are two approaches to communicate this information. One is to use available

SAIL functions to do the modi�cation directly. For example, if a node needs to be inserted,

call sw insertnode. If an edge needs to be deleted, call sw deleteedge to delete it from the

graph. However, the annotator also has to modify the data structure used by the annotated pro-

gram accordingly to make the program really run on a modi�ed graph. If the data structure is

complicated, the modi�cation will be a non-trivial task for the annotator.

The other method is to prepare a graph building function for each graph. Whenever this graph's

topology is changed, this function is called. The main operations in this function are to delete the

existing graph in Swan and build a new graph to replace the old one according to the graph's

current structure. This method makes graph modi�cation much easier. The main disadvantages

are the possible ine�ciency when the graph being modi�ed is large and the change of graph layout

and identity which may cause inconvenience or inconsistency.

Di�erent methods can be chosen for di�erent graphs to achieve better performance and make

annotation easier.

Input and output

The Swan message window is divided into two parts: the top line is used by the annotator to

display a one-line message, while the bottom line is used by the viewer to enter any data required

by the annotator.

The annotator can use SAIL function sw print to display a character string in the message

window. Function sw getstr is used to get input from the viewer.

Communicate with the viewer

The viewer of Swan applications has certain capabilities to control the running of the annotated

program and modify logical structures of graphs under the annotator's permission.

The annotator can allow the viewer to control the running process by enabling the RUN or STEP

buttons. He can insert function sw break anywhere in the annotated program so that the process

can stop at interesting points when the viewer steps through the program.

The annotator has to consider carefully whether he allows the viewer to modify the graphs generated

by the annotated program. If modi�cations are allowed, facilities need to be built in the annotated

program to support these modi�cations.

The annotator can create a function modify graph to be inserted at certain places in the annotated

program when he/she allows the viewer to modify one or more graphs.

3.6 An Example 47

The following code segment is an illustration of the function modify graph.

modify graph()

f

...

sw print("Please modify the graph or press STEP to continue") ;

/* sflag is TRUE after RUN or STEP is clicked. Otherwise, FALSE. */

sflag = FALSE ;

/* Enable the control buttons and EDITMENU to allow graph modi�cation. */

sw enablebuttons(RUNjSTEP) ;

sw enablemenuitem(EDITMENU, ITEMINSNODE) ;

sw enablemenuitem(EDITMENU, ITEMDELNODE) ;

sw enablemenuitem(EDITMENU, ITEMINSEDGE) ;

sw enablemenuitem(EDITMENU, ITEMDELEDGE) ;

/* Start a loop. If any edit menu item is selected, take actions correspondingly.

If RUN or STEP is clicked, exit the loop. */

while (TRUE) f

switch (sw wait(RUNjSTEPjINSNODEjDELNODEjINSEDGEjDELEDGE)) f

case STEP:

case RUN:

sflag = TRUE ;

break ;

case INSNODE:

insertnode() ;

break ;

case DELNODE:

deletenode() ;

break ;

case INSEDGE:

insertedge() ;

break ;

case DELEDGE:

deleteedge() ;

break ;

g

if (sflag) break ;

g

/* Disable EDITMENU to disallow graph modi�cations. */

sw disablemenuitem(EDITMENU, ITEMINSNODE) ;

sw disablemenuitem(EDITMENU, ITEMDELNODE) ;

sw disablemenuitem(EDITMENU, ITEMINSEDGE) ;

sw disablemenuitem(EDITMENU, ITEMDELEDGE) ;

48 REFERENCES

...

g

insertnode, deletenode, insertedge, and deleteedge are functions provided by the anno-

tator to actually carry out the modi�cations of the graphs.

Basically, modify graph sets up a communication channel between the annotator and the viewer.

When the annotator allows the viewer to modify the graph, he enables the graph editing menu

items. Otherwise, he disables those menu items. If these menu items are enabled, Swan will inform

the annotated program when the viewer chooses any one of them.

3.6.2 An example: bst.c

This is an example using SAIL to annotate a C++ program bst.c. The purpose of this program

is to build and maintain a binary search tree. The program is annotated to show the structure

of the binary search tree graphically. This program can be further modi�ed to take advantage

of Swan's graph editing capability. Then the testing statements in the original program would

not be necessary. With the function modify graph, the viewer can modify the binary search tree

interactively. From another point of view, this is also a simple example to show Swan's potential

as a debugging tool.

To annotate this program, the annotator creates a graph g. It has one layout component (LC)

of the type BINTREE. The function rebuild tree is called whenever the structure of the tree

is changed. The function tree insert is recursively called to traverse the binary search tree

and insert nodes and edges into graph g properly. rebuild tree is inserted in main after each

tree.print() statement to reect the changes of the tree.

As mentioned above, a function modify tree can be built to allow the viewer to modify the tree

interactively. It can be inserted at some places in main where the annotator allows the tree to be

modi�ed.

The source code of the annotated program bst.c can be found in Appendix B.

References

[1] P. Eades and K. Sugiyama, \How to Draw a Directed Graph", Journal of Information Pro-

cessing, Vol. 13, No. 4, 1990, pp. 424-437,

[2] T.M.J. Fruchterman and E.M. Reingold, \Graph Drawing by Force-directed Placement", Soft-

ware | Practice and Experience, Vol. 21(11), November 1991, pp. 1129-1164.

[3] E.R. Gansner, E. Koutso�os, S.C. North, and K.-P. Vo, \A Technique for Drawing Directed

Graphs", IEEE Transactions on Software Engineering, Vol. 19, No. 3, March 1993, pp. 214-

230.

REFERENCES 49

Figure 2: A binary search tree

[4] E.R. Gansner, S.C. North and K.-P. Vo, \DAG | A Program that Draws Directed Graphs",

Software | Practice and Experience, Vol. 18(1), November 1988, pp. 1047-1062.

[5] T. Kamada and S. Kawai, \An Algorithm for Drawing General Undirected Graphs", Infor-

mation Processing Letters, Vol. 31, April 1989, pp. 7-15.

[6] L.A. Rowe, M. Davis, E. Messinger, C. Meyer, C. Sprirakis and A. Tuan, \A Browser for

Directed Graphs", Software | Practice and Experience, Vol. 17(1), January 1987, pp. 61-76.

[7] C. Wetherell and A. Shannon, \Tidy Drawings of Trees", IEEE Transactions on Software

Engineering, Vol. SE-5, No. 5, September 1979, pp. 514-520.

[8] J. Yang, \Swan | A Data Structure Visualization System", MS Thesis, Department of Com-

puter Science, Viginia Tech, Blacksburg, VA, May 1995.

50 A THE MAKEFILE FOR BST

A The make�le for bst

#--

This is the makefile for installation of the annotated Binary

Search Tree algorithm.

To create the executble file:

make

To run the demo:

bst

#

Note: Assume g++ library is installed on your local host.

If you use other compilers, please make necessary change.

#--

PROG=bst

CC=g++

INCLUDES = -I../../include/

SRC = $(PROG).c

OBJ = $(PROG).o

TARGET = $(PROG)

LIBS = -L../../lib -lsail++ -lutils -lXt -lX11 -lm

$(TARGET): $(SRC) ../../lib/libsail++.a ../../lib/libutils.a

$(CC) -o $(TARGET) $(SRC) -DSWAN $(INCLUDES) $(LIBS)

#--

51

B Source Code of bst.c

/***

* bst.c -- a C++ program to construct and maintain a binary *

* search tree annotated with SAIL function calls *

***/

/*

To get the executable file without SWAN annotation:

g++ -o bst bst.c

To get the executable file with SWAN annotation:

g++ -o bst -DSWAN bst.c -L. -lsail++ -lXt -lX11 -lm

assuming sail.h and libsail++.a are in current directory.

*/

#include <iostream.h>

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include <ctype.h>

#include <assert.h>

#ifdef SWAN

#include "sail.h"

#endif

#define FALSE 0

#define TRUE 1

#define DEFAULT_SIZE 10 // size for lists if no size is given.

template <class T> class BinNode {

public:

T element; // The node's value

BinNode<T>* left; // Pointer to left child

BinNode<T>* right; // Pointer to right child

BinNode() { left = right = NULL; }

BinNode(T& e, BinNode<T>* l =NULL, BinNode<T>* r =NULL)

{ element = e; left = l; right = r; }

~BinNode() { }

BinNode<T>* leftchild() { return left; }

BinNode<T>* rightchild() { return right; }

T& value() { return element; }

BinNode<T>* setValue(T& val) { element = val; return this;}

bool isLeaf() { return (left == NULL) && (right == NULL); }

};

template <class T> class BST {

private:

BinNode<T>* root;

void clearhelp(BinNode<T>*);

void inserthelp(BinNode<T>*&, T&);

52 B SOURCE CODE OF BST.C

void removehelp(BinNode<T>*&, T&);

BinNode<T>* findhelp(BinNode<T>*, T&);

void printhelp(BinNode<T>*, int) const;

public:

BST() { root = NULL; }

~BST() { clearhelp(root); }

BST<T>& clear()

{ clearhelp(root); root = NULL; return *this; }

BST<T>& insert(T& val)

{ inserthelp(root, val); return *this; }

BST<T>& remove(T& val)

{ removehelp(root, val); return *this; }

BinNode<T>* deletemin(BinNode<T>*&);

BinNode<T>* find(T& val)

{ return findhelp(root, val); }

bool isEmpty() const

{ return root == NULL; }

void print() const {

if (root == NULL) cout << "The BST is empty.\n";

else printhelp(root, 0);

}

BinNode<T>* getRoot(void) { return root ; }

} ;

template <class T>

void BST<T>::clearhelp(BinNode<T>* rt) {

if (rt == NULL) return;

clearhelp(rt->leftchild());

clearhelp(rt->rightchild());

delete rt;

}

template <class T>

void BST<T>::removehelp(BinNode<T>*& rt, T& val) {

if (rt == NULL) cout << val << " is not in the tree.\n";

else if (val < rt->value()) removehelp(rt->left, val);

else if (val > rt->value()) removehelp(rt->right, val);

else { // Found it -- now delete it

BinNode<T>* temp = rt;

if (rt->left == NULL) rt = rt->right;

else if (rt->right == NULL) rt = rt->left;

else { // Both children are non-empty

temp = deletemin(rt->right);

rt->setValue(temp->value());

}

delete temp;

}

}

template <class T>

BinNode<T>* BST<T>::deletemin(BinNode<T>*& rt) {

BinNode<T>* temp;

assert(rt != NULL);

if (rt->left != NULL) return deletemin(rt->left);

else { temp = rt; rt = rt->right; return temp; }

}

53

template <class T>

BinNode<T>* BST<T>::findhelp(BinNode<T>* rt, T& val) {

if (rt == NULL) return NULL;

else if (val < rt->value())

return findhelp(rt->leftchild(), val);

else if (val == rt->value()) return rt;

else return findhelp(rt->rightchild(), val);

}

template <class T>

void BST<T>::inserthelp(BinNode<T>*& rt, T& val) {

if (rt == NULL) rt = new BinNode<T>(val, NULL, NULL);

else if (val < rt->value()) inserthelp(rt->left, val);

else inserthelp(rt->right, val);

}

template <class T>

void BST<T>::printhelp(BinNode<T> *rt, int level) const {

int i;

if (rt == NULL) return;

printhelp(rt->leftchild(), level+1);

for (i=0; i<level; i++) cout << " "; // indent

cout << rt->value() << "\n";

printhelp(rt->rightchild(), level+1);

}

// new functions added for the annotation purpose

#ifdef SWAN

rebuild_tree(BST<int>&) ;

_tree_insert(BinNode<int>*) ;

modify_tree(BST<int>&) ;

_insertnode(BST<int>&) ;

_deletenode(BST<int>&) ;

GRAPHID g = NULLGRAPHID ; // graph ID

LCID lc_handle = NULLLCID ; // LC ID

#endif

// main() is to test whether the binary search tree is correctly

// constructed and maintained

int main()

{

BST<int> tree;

#ifdef SWAN

sw_init() ; // Swan initialization

sw_disablebuttons(RUN) ; // force viewer step through

sw_step() ; // change mode to STEP

sw_print("Press STEP to start...") ;

sw_break() ;

#endif

cout << "IsEmpty: " << tree.isEmpty() << "\n";

tree.insert(10);

tree.print();

54 B SOURCE CODE OF BST.C

#ifdef SWAN

rebuild_tree(tree) ;

sw_break() ;

#endif

cout << "IsEmpty: " << tree.isEmpty() << "\n";

tree.remove(10);

tree.print();

#ifdef SWAN

rebuild_tree(tree) ;

sw_break() ;

#endif

cout << "IsEmpty: " << tree.isEmpty() << "\n";

tree.clear();

cout << "IsEmpty: " << tree.isEmpty() << "\n";

tree.insert(15);

cout << "IsEmpty: " << tree.isEmpty() << "\n";

tree.find(20);

tree.find(15);

tree.remove(20);

tree.insert(20);

tree.print();

#ifdef SWAN

rebuild_tree(tree) ;

sw_break() ;

#endif

tree.remove(20);

tree.print();

#ifdef SWAN

rebuild_tree(tree) ;

sw_break() ;

#endif

tree.insert(70);

cout << "IsEmpty: " << tree.isEmpty() << "\n";

tree.insert(35);

tree.insert(20);

tree.insert(17);

tree.insert(15);

tree.insert(19);

tree.insert(100);

tree.insert(90);

tree.insert(95);

tree.insert(1);

tree.print();

#ifdef SWAN

rebuild_tree(tree) ;

modify_tree(tree) ;

sw_break() ;

#endif

55

tree.find(100);

tree.find(99);

tree.find(20);

cout << "Need to do some delete tests.\n";

tree.remove(15);

tree.print();

#ifdef SWAN

rebuild_tree(tree) ;

sw_break() ;

#endif

tree.remove(15);

tree.print();

#ifdef SWAN

rebuild_tree(tree) ;

sw_break() ;

#endif

tree.clear();

tree.print();

#ifdef SWAN

rebuild_tree(tree) ;

sw_break() ;

#endif

cout << "IsEmpty: " << tree.isEmpty() << "\n";

#ifdef SWAN

sw_quit() ;

#endif

return(0);

}

#ifdef SWAN

rebuild_tree(BST<int>& tree_ptr)

{

if (g != NULLGRAPHID)

sw_deletegraph(g) ;

g = sw_newgraph(NULLGRAPHID, BOX, UNDIRECTED) ;

if (g == NULL) {

cout << "g cannot be created\n" ;

exit(0) ;

}

sw_setgraphattr(g, GNODECOLOR, DGREEN) ;

sw_setgraphattr(g, GEDGELABEL, OFF) ;

lc_handle = sw_newlc(g, NULLLCID, BINTREE) ;

sw_setcurlc(g, lc_handle) ;

_tree_insert(tree_ptr.getRoot()) ;

sw_displayallgraphs() ;

}

modify_tree(BST<int>& tree)

56 B SOURCE CODE OF BST.C

{

BOOLEAN temp_flag = FALSE ;

sw_print("Please modify the graph or STEP to continue...") ;

sw_enablemenuitem(EDITMENU, ITEMINSNODE) ;

sw_enablemenuitem(EDITMENU, ITEMDELNODE) ;

while (TRUE) {

switch (sw_wait(STEP|INSNODE|DELNODE)) {

case STEP:

temp_flag = TRUE ;

break ;

case INSNODE:

_insertnode(tree) ;

break ;

case DELNODE:

_deletenode(tree) ;

break ;

default:

break ;

}

if (temp_flag) break ;

}

sw_disablemenuitem(EDITMENU, ITEMINSNODE) ;

sw_disablemenuitem(EDITMENU, ITEMDELNODE) ;

}

_tree_insert(BinNode<int>* node_ptr)

{

BinNode<int> *left_child ;

BinNode<int> *right_child ;

if (node_ptr == NULL)

return TRUE ;

sw_insertnode(g,(NODEID)node_ptr,inttostr((*node_ptr).value()));

if ((left_child = (*node_ptr).leftchild()) != NULL) {

_tree_insert(left_child) ;

sw_insertbinedge(g, (NODEID)node_ptr, (NODEID)left_child,

NULL, LEFTCHILD) ;

}

if ((right_child = (*node_ptr).rightchild()) != NULL) {

_tree_insert(right_child) ;

sw_insertbinedge(g, (NODEID)node_ptr, (NODEID)right_child,

NULL, RIGHTCHILD) ;

}

}

_insertnode(BST<int>& tree)

{

char temp_str[80] ;

int val ;

sw_print("Please enter a node value:") ;

sw_getstr(temp_str) ;

57

sscanf(temp_str, "%d", &val) ;

tree.insert(val) ;

rebuild_tree(tree) ;

sprintf(temp_str, "Node %d inserted", val) ;

sw_print(temp_str) ;

}

_deletenode(BST<int>& tree)

{

char temp_str[80] ;

LABEL temp_label ;

int val ;

NODEID node_id ;

sw_print("Please pick a node:") ;

sw_picknode(&node_id) ;

sw_getnodeattr(g, node_id, GNODELABEL, &temp_label) ;

sscanf(temp_label, "%d", &val) ;

tree.remove(val) ;

rebuild_tree(tree) ;

sprintf(temp_str, "Node %d removed", val) ;

sw_print(temp_str) ;

}

#endif

/***

* End of bst.c *

***/

