Memory Management (Buffer Pool Applet)
User documentation:
1. Introduction:

Computer storage devices are classified into primary or main memory and secondary or peripheral storage also known as physical memory. It takes relatively slow time to access the data stored on secondary devices as compared to data stored in the main memory, so it becomes necessary to create efficient applications that process disk based information.

One way of reducing the disk access time is to store the sector that is being read or written to in the main memory so that all the next accesses to it will be to the main memory rather than on the disk which will reduce the time to access it. Storing a sector once it is read in the main memory is called buffering or caching. The information stored in a buffer is called a page, and the collection of buffers is called a buffer pool. The main aim to use buffer pools is to ensure that the new information requests can be served from the buffer pool rather than requiring the new information from the secondary storage devices.

The number of pages that can be stored in the buffer pool are quite less than the total number of pages on the secondary storage device. So as long as there is an unused buffer available in the buffer pool, new information can be read in from disk as demanded. When an application continues to read new information from the secondary storage device, eventually all the buffers from the buffer pool will be become full. Once this happens, some decision has to be made about what information in the buffer pool will be removed to make room for the newly requested information. The goal is to select the buffer that has the information that is least likely to be requested again.

Since the buffer pool cannot know for certain what the pattern of future requests will be like, a decision based on some heuristic, or best guess can be used. The applet tries to visualize several approaches that are used to make the guess.

One approach is to use “First In First Out” (FIFO). This approach stores the buffers in a queue. When the buffer is full the buffer at the front of queue is removed and the new buffer is stored at the end of the queue.

The other approach is called “Least Recently Used” (LRU). LRU simply keeps the buffers in a linked list. Whenever information in a buffer is accessed, this buffer is brought to the front of the list. When new information is to be read, the buffer at the end of the list is taken off and the new buffer is inserted in the front of the list.

The third approach is called “Least Frequently Used” (LFU). LFU tracks the number of accesses to the each buffer in the buffer pool. When a buffer has to be replaced the one with the least number of accesses is removed.

The user interface is shown below:

[image: image1.png]=3 Buffer Pool.

Physical Memory

Main Memory

Press Help to understand how this
system works.
O Select an Algorithm to continue

ID

«

Restan

[Fro ~]

- |

=181]

Figure: Shows user interface of the Buffer Pool applet.
Users interact with the system using push buttons, a combo box and text input field.

The controls provided are:

a) Algorithm Selection Combo box: This allows the users to select one of the approaches to manage buffers in the buffer pool.
b) Text Input Field: This allows users to enter the number of the page to be inserted in the main memory from the disk storage.
c) Next: This is the main button controlling the algorithm animation and allows users to go to the next step in the algorithm. The speed of the animation depends on its use.
d) Restart: This button allows users to change the algorithm that is implemented and restart with the new approach.
e) Help: This button explains to users the interface of the system in brief.
User feedback is given, using the display and the text field.

The display shows the physical memory and the main memory. The physical memory shows the total number of pages on the disk which is 10 in this case. The main memory is initially empty.

A detailed description of the tasks that a user needs to perform and the applet animation is given below.

2. Applet Animation and User Tasks:

When a user starts the animation system the text display, as shown below, instructs the user to select one of the buffer management algorithms that the user wants to implement using the combobox.

[image: image2.png]=3 Buffer Pool.

Physical Memory

Main Memory

Press Help to understand how this
system works.
O Select an Algorithm to continue

ID

«

Restan

[Fro ~]

- |

=181]

Figure: Shows the starting interface of the system, the user needs to select one of the buffer management algorithms using the combo-box.

Once the user selects the algorithm to implement various controls necessary to animate the system gets activated.

The user needs to enter the number of the page to be inserted in the main memory. Once the user enters the page number the updates to memory takes place depending on the algorithm that is selected.

[image: image3.png]=3 Buffer Pool.

FIFO:

Physical Memory

Main Memory

=181]

Agorithm Selected is FIFO
Enter a page to start

The Element entered is 2
Page inserted in memary is 2
Page Insertion is complete
Enter next page

The Element entered is 3
Page inserted in memary is 3
Page Insertion is complete
Enter next page

The Element entered is 6
Page inserted in memary is 6
Page Insertion is complete
Enter next page

The Element entered is 5

Page inserted in memary is 5
Page Insertion is complete

Enter next page

D

[|| o |

Moves to next step in the Algorithm

Figure: Shows the pages that have been inserted in the main memory.

Once the user enters the page number the user can step through the algorithm by pressing the ‘Next’ button repeatedly.

Different color combinations have been used to show the updates to the main memory.

[image: image4.png]=3 Buffer Pool. =18 x|
FIFO : Enter a page to start

D

The Element entered is 2
Page inserted in memary is 2
Page Insertion is complete

Enter next page
The Element entered is 3

Page inserted in memary is 3
Page Insertion is complete

Enter next page

Page To Insert : The Element entered is 6

Page inserted in memary is 6

_ Page Insertion is complete

Enter next page

The Element entered is 5
Page inserted in memary is 5
Page Insertion is complete

Physical Memory Main Memory Enter next page

The Element entered is 4
Page inserted in memary is 4 -

Figure: shows the page inserted in main memory highlighted in green

The page inserted in the main memory is highlighted in green color.

[image: image5.png]=3 Buffer Pool.

FIFO:

Physical Memory

Page To Insert :

Main Memory

The Element entered is 5
Page inserted in memary is 5
Page Insertion is complete
Enter next page

The Element entered is 4
Page inserted in memary is 4
Page Insertion is complete
Enter next page

The Element entered is 1

Page to be deleted is highlighted
in pink

Page remaved from mermory is 2
Page inserted In memory is 1
Page Insertion is complete
Enter next page

The Element entered is 7

Page to be deleted is highlighted
in pink

D

Moves to next step in the Algorithm

=181]

Figure shows the page to be deleted is highlighted in red.

The page to be deleted is highlighted in red color.

The messages on the text field explain the updates to the memory, user task and instructions are provided using red color.

If the user has selected to animate ‘Least Frequently Used’ memory management algorithm, then the number of accesses to the page are shown along with it as shown in the figure below.

[image: image6.png]f=3 Buffer Pool. =18] x|
LFU: TTE Element entered 1s &
Page Insertion is complete

D

Enter next page

The Element entered is 5§
The page Is already in the memory

The Position and the number of
accesses of the page has been
updated

Page Insertion is complete

Enter next page 7

The Element entered is 7
Page Insertion is complete

Enter next page

The Element entered is
Page to be removed is highlighted
in Pink

Page removed is 2

Physical Memory Main Memory Page added is 8
Page Insertion is complete.

Enter next page

I J[e] [|| o |

Figure: shows the display of the number of disk accesses in case of LFU algorithm.

In addition to the instructions provided in the text area and the feedback messages, a tool tip text is provided, explaining the function of the button when the mouse cursor is on that button.

Users can also refer to the help manual if there is any confusion with the interface and the graphical display.

The help manual is displayed when the help button is clicked.

[image: image7.png][Efinstruction Manual =/

HOW TO USE THIS SYSTEM:

Prabably the easiest way to use this applet is to fallaw the
instructions that are given during run time on the text area

Following is the brief summary of how to run the appl.

To start running the system you need ta select the memary
management algorithm that you want to animate
The choices are

1.FIFO
2.LFU
3.LRU

Once you select the algorithm, you can start animating it by
entering the page number that you want to insert in the main ||

Figure shows the help manual.

Software documentation:

3. Code Explanation:

The following classes are used to implement this applet. The explanation for each of the classes is given below.
a) BufferMain:

The BufferMain class is written in the BufferMain.java file. This class contains the main () function.

To compile the system you need to type in the following command:

“javac BufferMain.java”

To run the system you need to type in the following command:

“java BufferMain”

The class “BufferMain” calls the BufferPool class.

The control flow is shown below.

The BufferMain has only one function main () where the program execution begins.

b) BufferPool:

The BufferPool function written in BufferMain.java file, controls the user interface and interaction of the entire system.

The following Java swing classes are used to create the user interface.

- JFrame

· JPanel

· JTextPane

· JScrollPane

· JButton

· JComboBox

· JtextField

· Container

Other java classes used are as follows:

· String

· Style

· StyleConstants

Besides java classes, the following classes that have been written as a part of this thesis are also imported to create the user interface and show graph animation.

· drawBuffer

· FiFoAlgorithm

· LruAlgorithm

· LfuAlgorithm

· Instructions

Each of the above class is explained in detail below.

Apart from these classes, Java Action Listeners have been used for creating the buttons, text field and the combo box. Document interface has been used for the JTextPane class.

The constructor of the class i.e. BufferPool () creates the display area to show the animation, the text area that provides the messages during run time and the buttons, text field and the combobox that allows the user to interact with the system.

The method summary of the BufferPool class:

a) actionPerformed ():

This is called when the user presses any of the buttons, combo box or enters a number in the text field. Depending on the button pressed or the algorithm selected in the combo box or the page entered in the text field, appropriate action is taken.

b) FiFoImplementation ()

This method is called by the actionPerfomed () method, if the user has selected ‘FIFO’ algorithm in the combo box, when the user presses the ‘Next’ button. It updates the main memory i.e. inserts/deletes the pages from the main memory using the FIFO approach.

c) LruImplementation ()

This method is called by the actionPerformed () method, if the user has selected ‘LRU’ algorithm in the combo box, when the user presses the ‘Next’ button. It makes the changes to the main memory i.e. inserts/deletes the pages from the main memory using the LRU approach.

d) LfuImplementation ()

This method is called by the actionPerformed () method when the user has selected ‘LFU’ algorithm in the combo box, when the user presses the ‘Next’ button. It makes the changes to the main memory i.e. inserts/deletes the pages from the main memory using the LFU approach.

e) Message (String color)

This method is called to display a message in the text field.

The control flow for the BufferPool class is given below:

c) drawBuffer:

The drawBuffer class is written in drawBuffer.java file. It performs the graphics operation for the animation.

The class inherits its method from the swing class JComponent.

The drawBuffer class draws the main memory and the physical memory, the changes taking place on them to perform algorithm animation, and the algorithm selected by the user.

The method summary for the drawBuffer class:

a) Paint ()

This function performs all the graphics operation for the system.

b) Set_AlgoSelected ()

This function passes the algorithm selected by the user to display it, on the display area.

c) InsertPage ()

This function is called when the user presses the ‘Insert’ button. It displays the page that is to be inserted in the main memory, in a green rectangle below it.

d) ResetInsertMark ()

This function is called to mark the end of the insertion of page in the main memory.

e) DeleteMarked ()

This function displays the page that is deleted from the main memory, in a pink rectangle below it.

f) ResetDeleteMark

The above function is called when the user presses the ‘Next’ button after the page insertion is completed to stop the display of the page to be inserted below the main memory.

g) PageInserted ()

This function is called to highlight the page that is inserted in the main memory or the page to be deleted from the main memory.

h) ResetPageInserted ()

The above function is called to stop highlighting of the page in the main memory.

The control flow for drawBuffer is shown below:

d) FiFoAlgorithm class:

This class implements the Fifo algorithm for the system.

This class is initialized if the user selects to implement the ‘FIFO’ algorithm from the combo box. The methods of this class are called by the FifoImpementation function is the BufferPool class.

The method summary for the fileInput class:

a) InsertElement ()

This function passes the number of the page to be inserted in the main memory.

b) DeletePage ()

This function is used to determine if any page has been deleted from the main memory.

The control flow for this class is shown below:

e) LfuAlgorithm class:

This class implements the LFU algorithm for the system.

This class is initialized if the user selects to implement the ‘LFU’ algorithm from the combo box. The methods of this class are called by the LfuImplementation function is the BufferPool class.

The method summary for the LfuAlgorithm class:

a) InputElement ()

The above function is called to insert a page in the main memory.

b) IsElementInMemory ()

This function is called to check if the page entered by the user, is already in the main memory.

c) Index ()

This function returns the index of the page, (that the user entered to insert in the main memory), if it is already in the main memory.

d) ResetIsInMemory ()

This function resets the variables so that the next inputs are not affected by the results of the previous ones.

The control flow of this class is as follows:

f) LruAlgorithm:

This class implements the LRU algorithm for the system.

This class is initialized if the user selects to implement the ‘LRU’ algorithm from the combo box. The methods of this class are called by the LruImplementation function is the BufferPool class.

The method summary for the LruAlgorithm class:

a) InsertElement ()

The above function is called to insert a page in the main memory.

b) IsElementThere ()

This function is called to check if the page entered by the user, is already in the main memory.

c) Index ()

This function returns the index of the page, (that the user entered to insert in the main memory), if it is already in the main memory.

d) SetIsElement ()

This function resets the variables so that the next inputs are not affected by the results of the previous ones.

e) PageRemoved ()

This function returns the number of the page that is removed from the main memory.

The control flow of this class is as follows:

g) Instructions:

This class displays the help manual. It is called when the user clicks the help button.

The constructor of the class creates the interface for the help manual and adds text to it.

The method summary for the Instructions class:

a) Message ()

 This function is used to display a string in the text area.

b) getrid ()

This function disables more than one help manual open at a time. It will destroy the old manual window before displaying the new one.

The control flow for this class is as follows:

The control flow of the system is as follows:

BufferMain

BufferPool

Calls

 BufferPool

 Instructions

LfuAlgorithm

 drawBuffer

LruAlgorithm

 FifoAlgorithm

 drawBuffer

 BufferPool

 FiFoAlgorithm

calls

 BufferPool

LfuAlgorithm

Calls

 BufferPool

Calls

LruAlgorithm

BufferPool

BufferMain

 BufferPool

BufferPool

LruAlgorithm

LfuAlgorithm

 FifoAlgorithm

 Instructions

 drawBuffer

Instructions

Calls

Calls

